Talks by Časlav Brukner

Quantum reference frames for space and space-time

Časlav Brukner Universität Wien
In physics, a reference frame is an abstract coordinate system that specifies observations within that frame. While quantum states depend on the choice of reference frame, the form of physical laws is assumed to be covariant. Recently, it has been proposed to consider reference frames as physical systems and as such assume that they obey quantum mechanics. In my talk, I will present recent results in the field of "quantum reference frames" (QRF).

Timeless formulation of Wigner’s friend scenarios

Časlav Brukner Universität Wien

At the heart of the quantum measurement problem lies the ambiguity about exactly when to use the unitary evolution of the quantum state and when to use the state-update in dynamics of quantum mechanical systems. In the Wigner’s friend gedankenexperiment, different observers (one of whom is observed by the other) describe one and the same interaction differently. One – the friend – uses the state-update rule and the other – Wigner – chooses unitary evolution.

A no-go theorem for observer-independent facts

Časlav Brukner Universität Wien
In his famous thought experiment, Wigner assigns an entangled state to the composite quantum system made up of Wigner's friend and her observed system. While the two of them have different accounts of the process, each Wigner and his friend can in principle verify his/her respective state assignments by performing an appropriate measurement. As manifested through a click in a detector or a specific position of the pointer, the outcomes of these measurements can be regarded as reflecting directly observable "facts".

Bell's theorem for temporal order

Časlav Brukner Universität Wien

In general relativity causal relations between any pair of events is uniquely determined by locally predefined variables - the distribution of matter-energy degrees of freedom in the events' past light-cone. Under the assumption of locally predefined causal order, agents performing freely chosen local operations on an initially local quantum state cannot violate Bell inequalities. However, superposition of massive objects can effectively lead to "entanglement" in the temporal order between groups of local operations, enabling the violation of the inequalities.

Indefinite causal order in quantum mechanics

Časlav Brukner Universität Wien
One of the most deeply rooted concepts in science is causality: the idea that events in the present are caused by events in the past and, in turn, act as causes for what happens in the future. If an event A is a cause of an effect B, then B cannot be a cause of A. Recently we proposed a framework that assumes that operations in local laboratories are described by quantum mechanics, but where no reference is made to any global causal relations between these operations. The central notion of the formalism is “process” which is a generalization of the causal notion of “quantum state”.

Quantum correlations with no causal order

Časlav Brukner Universität Wien
Much of the recent progress in understanding quantum theory has been achieved within an operational approach. Within this context quantum mechanics is viewed as a theory for making probabilistic predictions for measurement outcomes following specified preparations. However, thus far some of the essential elements of the theory – space, time and causal structure – elude such an operational formulation and are assumed to be fixed. Is it possible to extend the operational approach to quantum mechanics such that the notions of an underlying spacetime or causal structure are not assumed?

What are the costs of dealing with "states of reality" in quantum theory?

Časlav Brukner Universität Wien
Bell and experimental tests of his inequality showed that it is impossible to explain all of the predictions of quantum mechanics using a theory which satisfies the basic concepts of locality and realism, but which (if not both) is violated is still an open question. As it seems impossible to resolve this question experimentally, one can ask how plausible realism -- the idea that external properties of systems exist prior to and independent of observations -- is, by considering the amount of resources consumed by itself and its non-local features.

Quantum Mechanics as a Theory of Systems with Limited Information Content

Časlav Brukner Universität Wien
I will consider physical theories which describe systems with limited information content. This limit is not due observer's ignorance about some “hidden” properties of the system - the view that would have to be confronted with Bell's theorem - but is of fundamental nature. I will show how the mathematical structure of these theories can be reconstructed from a set of reasonable axioms about probabilities for measurement outcomes.