

Quantum field theory was originally developed as the extension of quantum mechanics needed to accommodate the principles of special relativity. Today quantum field theory is the modern paradigm with which we understand particle physics, condensed matter systems, and many aspects of early universe cosmology, and it is used to describe the interactions of elementary particles, the dynamics of many body systems and critical phenomena, all with exquisite accuracy. Currently, Perimeter researchers are producing world-leading advances in the study of integrability and scattering amplitudes in quantum field theories. String theory is a theoretical framework which was proposed to produce a unified description of all particles and forces in nature, including gravity. It is based on the idea that at very short distances, all particles should in fact be seen to be extended one-dimensional objects, i.e., ‘strings.’ Modern string theory has grown to be a broad and varied field of research with strong connections to quantum gravity, particle physics and cosmology, as well as mathematics. An exciting new framework known as ‘holography’ has emerged from string theory whereby quantum gravity is formulated in terms of quantum field theory in one less dimension. This symbiosis between quantum field theory and quantum gravity has been a focus of many Perimeter researchers. This has led to the development of exciting new methods to study the quantum dynamics of gauge theories and in the application of these techniques to new domains, such as nuclear physics and condensed matter physics
Kevin Costello Perimeter Institute for Theoretical Physics
Kevin Costello Perimeter Institute for Theoretical Physics
Kevin Costello Perimeter Institute for Theoretical Physics
Davide Gaiotto Perimeter Institute for Theoretical Physics
Davide Gaiotto Perimeter Institute for Theoretical Physics
Pedro Vieira Perimeter Institute for Theoretical Physics
Paul Ryan King's College London
Paul Ryan King's College London
Paul Ryan King's College London
Pedro Vieira Perimeter Institute for Theoretical Physics
Robert Myers Perimeter Institute for Theoretical Physics
Atul Sharma Harvard University
Cumrun Vafa Harvard University
Savas Dimopoulos Perimeter Institute for Theoretical Physics
Ning Su Università di Pisa
Aike Liu California Institute of Technology
Ning Su Università di Pisa
Aike Liu California Institute of Technology
Aike Liu California Institute of Technology
Sergey Sibiryakov McMaster University
Sergey Sibiryakov McMaster University
Sergey Sibiryakov McMaster University
Sergey Sibiryakov McMaster University
Sergey Sibiryakov McMaster University
Sergey Sibiryakov McMaster University
Cliff Burgess McMaster University
Cliff Burgess McMaster University
Cliff Burgess McMaster University
Cliff Burgess McMaster University
Dan Wohns Perimeter Institute for Theoretical Physics
Dan Wohns Perimeter Institute for Theoretical Physics
Dan Wohns Perimeter Institute for Theoretical Physics
Kirill Krasnov University of Nottingham
Michel Dubois-Violette University of Paris-Saclay
Paul Townsend University of Cambridge
Kirill Krasnov University of Nottingham
Leron Borsten Imperial College London
Mia Hughes Imperial College London
Cohl Furey Humboldt University of Berlin
Mia Hughes Imperial College London
Ivan Todorov Bulgarian Academy of Sciences
Mari-Carmen Banuls Max Planck Institute for Gravitational Physics - Albert Einstein Institute (AEI)
Frank Verstraete Ghent University
Jens Eisert Freie Universität Berlin
Ignacio Cirac Max Planck Institute for Gravitational Physics - Albert Einstein Institute (AEI)
Michael Walter University of Amsterdam
Andreas Bauer Freie Universität Berlin
Riley Chien Dartmouth College
This survey course introduces some advanced topics in quantum field theory and string theory. Topics may include anomalies, conformal field theory, and bosonic string theory and are subject to change depending on the topics covered in the TBD elective course.
This mini-course will introduce twisted holography, which is holography for BPS subsectors of gauge theory and gravity. We will start by introducing the B-model topological string from the space-time perspective, before discussing branes, backreaction, and the holographic duality.
Zoom: https://pitp.zoom.us/j/98839130613?pwd=SExFK0ZVYzJ3NmJhU1RFa21PWU1qQT09
In this mini-course we will describe some recent integrability developments in N=4 SYM. Pedro will start with some overview of three point functions in this theory. Paul will introduce the powerful Quantum Spectral Curve formalism describing the full planar spectrum of N=4 SYM starting with some elementary spin chain introduction. In this formalism, each operator in the theory is governed by a (set of) Q-function(s). In his last lecture Paul will walk us through an explicit example from beginning to end of a QSC solution. Pedro will then describe some explorations on three point correlation functions in this theory. The goal would be to have a machine where three Q-functions are given as input and a three-point function is spit out as output. We will describe where we are in this quest.
No Zoom link or hybrid participation available. Registration is not required.
The Perimeter Institute for Theoretical Physics is delighted to host the 33rd installment of Strings, the flagship annual conference for the extended string theory community.
Strings 2023 will take place at PI July 24-29. Capacity is limited to 200 in-person attendees. The programming will incorporate an interactive simulcast for virtual attendees.
Recorded talks: https://pirsa.org/C23001
Organizing Committee: Sabrina Pasterski,* Freddy Cachazo, Kevin Costello, Davide Gaiotto, Jaume Gomis, Rob Myers, Pedro Vieira, & Alex Buchel.
Territorial Land Acknowledgement
Perimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
This school will be an advanced course on the numerical bootstrap. In the lectures, we will discuss advanced theoretical aspects of numerical bootstrap and algorithms. In the tutorials, we will demonstrate how to use simpleboot/hyperion and help the participants to run bootstrap computation on their own clusters. Main examples are 3D Ising, O(2), O(3), Gross-Neveu-Yukawa CFTs.
The school will consist of one lecture in the morning and two tutorials in the afternoon (one tutorial for simpleboot (by Ning Su) and another one for hyperion (by Aike Liu).
Course materials, including tutorials, slides, and sample codes, can be found at https://gitlab.com/AikeLiu/Bootstrap-Mini-Course
This event is supported by the Simons Collaboration on The Nonperturbative Bootstrap (https://bootstrapcollaboration.com/).
Territorial Land Acknowledgement
Perimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.
The course is an introduction to quantum field theory in curved spacetime. Upon building up the general formalism, the latter is applied to several topics in the modern theory of gravity and cosmology where the quantum properties of fundamental fields play an essential role.
Topics to be covered:
1) Radiation of particles by moving mirrors
2) Hawking radiation of black holes
3) Production of primordial density perturbations and gravity waves during inflation
4) Statistical properties of the primordial spectra
Required prior knowledge:
Foundations of quantum mechanics and general relativity
This course uses quantum electrodynamics (QED) as a vehicle for covering several more advanced topics within quantum field theory, and so is aimed at graduate students that already have had an introductory course on quantum field theory. Among the topics hoped to be covered are: gauge invariance for massless spin-1 particles from special relativity and quantum mechanics; Ward identities; photon scattering and loops; UV and IR divergences and why they are handled differently; effective theories and the renormalization group; anomalies.
Over the years, various researchers have suggested connections between the octonions and the standard model of particle physics. The past few years, in particular, have been marked by an upsurge of activity on this subject, stimulated by the recent observation that the standard model gauge group and fermion representation can be elegantly characterized in terms of the octonions. This workshop, which will be the first ever on this topic, is intended to bring this new community together in an attempt to better understand these ideas, establish a common language, and stimulate further progress.
The workshop will consist of an hour-long talk every Monday at noon (EST), with the first talk on Monday February 8, and the final talk on Monday May 17.