
Quantum field theory was originally developed as the extension of quantum mechanics needed to accommodate the principles of special relativity. Today quantum field theory is the modern paradigm with which we understand particle physics, condensed matter systems, and many aspects of early universe cosmology, and it is used to describe the interactions of elementary particles, the dynamics of many body systems and critical phenomena, all with exquisite accuracy. Currently, Perimeter researchers are producing world-leading advances in the study of integrability and scattering amplitudes in quantum field theories. String theory is a theoretical framework which was proposed to produce a unified description of all particles and forces in nature, including gravity. It is based on the idea that at very short distances, all particles should in fact be seen to be extended one-dimensional objects, i.e., ‘strings.’ Modern string theory has grown to be a broad and varied field of research with strong connections to quantum gravity, particle physics and cosmology, as well as mathematics. An exciting new framework known as ‘holography’ has emerged from string theory whereby quantum gravity is formulated in terms of quantum field theory in one less dimension. This symbiosis between quantum field theory and quantum gravity has been a focus of many Perimeter researchers. This has led to the development of exciting new methods to study the quantum dynamics of gauge theories and in the application of these techniques to new domains, such as nuclear physics and condensed matter physics
Format results
-
-
Gluon scattering in AdS from CFT
Pietro Ferrero University of Oxford
-
Brane dynamics with broken supersymmetry
Ivano Basile Ludwig-Maximilians-Universität München (LMU)
-
On the string/black hole transition
Juan Maldacena Institute for Advanced Study (IAS) - School of Natural Sciences (SNS)
-
Wormholes in the partially disorder-averaged SYK model
Kanato Goto University of Tokyo
-
The onset of quantum chaos in disordered systems
Adar Sharon Stony Brook University
-
Exact thermalization dynamics in the "Rule 54" Quantum Cellular Automaton
Katja Klobas University of Oxford
-
Integrability and Conformal Bootstrap: One Dimensional Defect CFT
Andrea Cavaglia King's College London
-
Sequential Discontinuities of Scattering Amplitudes
Hofie Sigridar Hannesdottir Institute for Advanced Study (IAS)
-
Amplitudes and the Riemann Zeta Function
Grant Remmen University of California, Santa Barbara
-
Non-relativistic physics in AdS and its CFT dual
Zahra Zahraee Perimeter Institute for Theoretical Physics
-
Matrix bootstrap revisited
Vladimir Kazakov École Normale Supérieure - PSL