The nature of antimatter is examined in the context of algebraic quantum
field theory. It is shown that the notion of antimatter is more general
than that of antiparticles. Properly speaking, then, antimatter is not
matter made up of antiparticles --- rather, antiparticles are particles
made up of antimatter. We go on to discuss whether the notion of antimatter
is itself completely general in quantum field theory. Does the
matter-antimatter distinction apply to all field theoretic systems? The
answer depends on which of several possible criteria we should impose on
the space of physical states.
I will present analytic solutions to a class of cosmological models described by a canonical scalar field minimally coupled to gravity and experiencing self interactions through a hyperbolic potential. Using models and methods of solution inspired by 2T-physics, I will show how analytic solutions can be obtained including radiation and spacial curvature. Among the analytic solutions, there are many interesting geodesically complete cyclic solutions, both singular and non-singular ones. Cyclic cosmological models provide an alternative to inflation for solving the horizon and flatness problems as well as generating scale-invariant perturbations. I will argue in favor of the geodesically complete solutions as being more attractive for constructing a more satisfactory model of cosmology. When geodesic completeness is imposed, it restricts models and their parameters to certain a parameter subspace, including some quantization conditions on parameters. I will explain the theoretical origin of our model from the point of view of 2T-gravity as well as from the point of view of the colliding branes scenario. If time permits, I will discuss how to associate solutions of the quantum Wheeler-deWitt equation with the classical analytic solutions, physical aspects of some of the cyclic solutions, and outline future directions.
I will describe a method to compute from first principles the anomalous dimension of short operators in N=4 super Yang-Mills theory at strong coupling, where they are described in terms of superstring vertex operators in an anti-de Sitter background. I will focus on the Konishi multiplet, dual to the first massive level of the superstring, and compute the one-loop correction to its anomalous dimension at strong coupling, using the pure spinor formalism for the superstring.