There are good reasons to think that our understanding of particle physics is incomplete. The effective field theory describing the particles that we know about breaks down at the TeV scale, and new effective degrees of freedom must enter. In this talk I will discuss the role that strong dynamics might play in this new physics, focusing on the ways in which approximately scale-invariant dynamics could explain puzzling features of our low-energy Lagrangian. I will also describe recent theoretical and numerical results aimed at constraining the range of behavior that can occur in 4D conformal field theories.
Assuming exotic matter, several models representing static, spherically symmetric wormhole solutions of Einstein's field equations have been considered in the literature. We examine the dynamical stability of such wormholes in one of the simplest model, in which the matter is described by a massless ghost scalar field, and prove that all solutions are unstable with respect to linear fluctuations and possess precisely one unstable, exponentially in time growing mode. Numerical simulations of the nonlinear field equations suggest that these wormholes either expand or collapse and form a black hole. The stability problem for alternative models including electrically charged wormholes is also discussed.
For nearly the past century, the nature of dark matter in the Universe has puzzled astronomers and physicists. During the next decade, experiments will determine if a substantial amount of the dark matter is in the form of non-baryonic, Weakly-Interacting Massive Particles (WIMPs). In this talk I will discuss and interpret modern limits on WIMP dark matter from a variety of complementary methods. I will show that we are just now obtaining sensitivity to probe the parameter space of cosmologically-predicted WIMPs created during the earliest epoch in the Universe. I will discuss the science to extract from a positive signal in different experiments, and the prospects for an era of dark matter astrophysics.