Physics emerged from the twentieth century with two remarkably successful descriptions of nature which stand in striking contrast. Quantum mechanics describes the subatomic realm with intrinsic uncertainties and probabilities. On the other hand, Einstein's general relativity describe gravitational phenomena in an exacting geometric arena. Theoretical physicists have struggled for over fifty years trying to combine these views in a single unified framework. More recently, superstring theory has drawn a huge amount of interest as a leading contender to provide such a unification. Superstring theory is a theory of strings, branes, extra spacetime dimensions and much more. In my lecture, I will try to give a flavour for what superstring theory is all about and why physicists, like myself, continue to be so excited about this, perhaps the final theory.
Put two physicists in a room and ask them to talk about the interpretation of quantum mechanics. This is a recipe for disagreement; the mysteries of quantum theory run so deep that it
The gauge mediation models with a gravitino mass in the eV range is a
quite attractive scenario which causes no cosmological/astrophysical problems.
The model construction with such a light gravitino is, however, quite challenging
and in most cases ends up with the problems with the suppressed gaugino mass,
the vacuum instability and the Landau pole problems of the Standard Model gauge
coupling constants.
In this talk, I explain our proposal in which a gauge mediation model with the gravitino whose mass in the eV range is realized without having those problems.
Many results have been recently obtained regarding the power of hypothetical closed time-like curves (CTC’s) in quantum computation. Most of them have been derived using Deutsch’s influential model for quantum CTCs [D. Deutsch, Phys. Rev. D 44, 3197 (1991)]. Deutsch’s model demands self-consistency for the time-travelling system, but in the absence of (hypothetical) physical CTCs, it cannot be tested experimentally. In this paper we show how the one-way model of measurement-based quantum computation (MBQC) can be used to test Deutsch’s model for CTCs. Using the stabilizer formalism, we identify predictions that MBQC makes about a specific class of CTCs involving travel in time of quantum systems. Using a simple example we show that Deutsch’s formalism leads to predictions conflicting with those of the one-way model. There exists an alternative, little-discussed model for quantum time-travel due to Bennett and Schumacher (in unpublished work, see http://bit.ly/cjWUT2), which was rediscovered recently by Svetlichny [arXiv:0902.4898v1]. This model uses quantum teleportation to simulate (probabilistically) what would happen if one sends quantum states back in time. We show how the Bennett/ Schumacher/ Svetlichny (BSS) model for CTCs fits in naturally within the formalism of MBQC. We identify a class of CTC’s in this model that can be simulated deterministically using techniques associated with the stabilizer formalism. We also identify the fundamental limitation of Deutsch's model that accounts for its conflict with the predictions of MBQC and the BSS model. This work was done in collaboration with Raphael Dias da Silva and Elham Kashefi, and has appeared in preprint format (see website). Website: http://arxiv.org/abs/1003.4971
In this talk I shall describe a general formalism based on $AdS_2/CFT_1$ correspondence that allows us to
systematically calculate the entropy, index and other physical observables of an extremal black hole taking into
account higher derivative and quantum corrections to the action. I shall also describe precise microscopic computation of the same
quantities for a class of supersymmetric extremal black holes and compare this with the prediction of $AdS_2/CFT_1$
correspondence.
In this talk I shall describe a general formalism based on $AdS_2/CFT_1$ correspondence that allows us to
systematically calculate the entropy, index and other physical observables of an extremal black hole taking into
account higher derivative and quantum corrections to the action. I shall also describe precise microscopic computation of the same
quantities for a class of supersymmetric extremal black holes and compare this with the prediction of $AdS_2/CFT_1$
correspondence.
In this talk I shall describe a general formalism based on $AdS_2/CFT_1$ correspondence that allows us to systematically calculate the entropy, index and other physical observables of an extremal black hole taking into account higher derivative and quantum corrections to the action. I shall also describe precise microscopic computation of the same quantities for a class of supersymmetric extremal black holes and compare this with the prediction of $AdS_2/CFT_1$ correspondence.
Massachusetts Institute of Technology (MIT) - Department of Physics
PIRSA:10070022
The headline result of this talk is that, based on plausible complexity-theoretic assumptions, many properties of quantum channels are computationally hard to approximate. These hard-to-compute properties include the minimum output entropy, the 1->p norms of channels, and their "regularized" versions, such as the classical capacity.
The proof of this claim has two main ingredients. First, I show how many channel problems can be fruitfully recast in the language of two-prover quantum Merlin-Arther games (which I'll define during the talk). Second, the main technical contribution is a procedure that takes two copies of a multipartite quantum state and estimates whether or not it is close to a product state.
This is based on arXiv:1001.0017, which is joint work with Ashley Montanaro.
In this talk I will describe how random matrix theory and free probability theory (and in particular, results of Haagerup and Thorbjornsen) can give insight into the problem of understanding all possible eigenvalues of the output of important classes of random quantum channels. I will also describe applications to the minimum output entropy additivity problems.
In this talk we will explain how the main step technical steps in the proofs by Hastings and Hayden-Winter of the non-additivity of the minimal output von Neumann and $p$-Renyi entropy (for any $p>1$) can be reduced to a sharp version of Dvoretzky's theorem on almost spherical sections of convex bodies. This substantially simplifies their analysis, at least on the conceptual level, and provides an alternative point of view on these and related questions.
Joint work with G. Aubrun and E. Werner