Holographic superconductors provide tractable models for the onset of superconductivity in strongly coupled theories. They have some features in common with experimentally studied nonconventional superconductors. I will review the physics of holographic superconductors and go on to show that many such models are to be found in the string landscape of AdS_4 vacua.
We study the entanglement dynamics and relaxation properties of a system of two interacting qubits in the two cases (I) two independent bosonic baths and (II) one common bath, at temperature $T$. The entanglement dynamics is studied in terms of the concurrence C(t) between the two spins and of the von Neumann entropy S(t) with respect to the bath, as a function of time. We prove that the system does thermalize. In the case (II) of a single bath, the existence of a decoherence-free (DFS) subspace makes entanglement dynamics very rich. We show that when the system is initially in a state with a component in the DFS the relaxation time is surprisingly long, showing the existence of semi-decoherence free subspaces. The equilibrium state in this case is not the Gibbs state. The entanglement dynamics for the single bath case is also studied as a function of temperature, coupling strength with the environment and strength of tunneling coupling. The case of the mixed state is finally shown and discussed.
s-channel resonances are predicted by many models of Physics Beyond the Standard Model and it is quite possible that such an object will be discovered in the early years of the LHC program. If this occurs, the task will be to understand its origins. A brief survey of models that predict s-channel resonances will be given, concentrating mainly on extra neutral gauge bosons (Z' 's) arising from extended gauge theories. This will be followed by a description of how to search for a Z' and the resulting Z' discovery reach of the LHC. I will describe various diagnostic measurements to study Z' 's and describe some new observables we have proposed that can distinguish between models that take advantage of the ability to tag 3rd generation fermions.
This course provides a thorough introduction to the bosonic string based on the Polyakov path integral and conformal field theory. We introduce central ideas of string theory, the tools of conformal field theory, the Polyakov path integral, and the covariant quantization of the string. We discuss string interactions and cover the tree-level and one loop amplitudes. More advanced topics such as T-duality and D-branes will be taught as part of the course. The course is geared for M.Sc. and Ph.D. students enrolled in Collaborative Ph.D. Program in Theoretical Physics. Required previous course work: Quantum Field Theory (AM516 or equivalent). The course evaluation will be based on regular problem sets that will be handed in during the term. The primary text is the book: 'String theory. Vol. 1: An introduction to the bosonic string. J. Polchinski (Santa Barbara, KITP) . 1998. 402pp. Cambridge, UK: Univ. Pr. (1998) 402 p.' All interested students should contact Alex Buchel at [email protected] as soon as possible.
The great advances in observational cosmology in the last few years have delivered us an unprecedented amount of new data. They begin to indicate with confidence that in the past our universe underwent a phase of acceleration, called inflation, and that it is currently undergoing a similar phase, usually thought of as a consequence of a cosmological constant. I will show how inflation can be probed, using to this purpose a very general effective field theory description. In particular, I will concentrate on the new and powerful signal of the non-gaussianity of the primordial density perturbations, explaining its theoretical motivation, the techniques to look for it in the data, and the current constraints from the WMAP experiment. This signature is very important not only to identify the precise mechanism that drove inflation, but also to shed light on possible alternatives, such as the recently proposed bouncing cosmology. I will describe how these alternative theories can be consistently formulated and be predictive, and how similar theories may have interesting implications for the current acceleration of the universe. If inflation happened in our past, it might actually have been eternal. The presence of such a phase offers a new way to address the problem of the cosmological constant and of the current acceleration of the universe. This will lead us to explain in precise terms what eternal inflation is.
This course provides a thorough introduction to the bosonic string based on the Polyakov path integral and conformal field theory. We introduce central ideas of string theory, the tools of conformal field theory, the Polyakov path integral, and the covariant quantization of the string. We discuss string interactions and cover the tree-level and one loop amplitudes. More advanced topics such as T-duality and D-branes will be taught as part of the course. The course is geared for M.Sc. and Ph.D. students enrolled in Collaborative Ph.D. Program in Theoretical Physics. Required previous course work: Quantum Field Theory (AM516 or equivalent). The course evaluation will be based on regular problem sets that will be handed in during the term. The primary text is the book: 'String theory. Vol. 1: An introduction to the bosonic string. J. Polchinski (Santa Barbara, KITP) . 1998. 402pp. Cambridge, UK: Univ. Pr. (1998) 402 p.' All interested students should contact Alex Buchel at [email protected] as soon as possible.
The cosmological constant problem is arguably the deepest gap in our understanding of modern physics. The discovery of cosmic acceleration in the past decade and its surprising coincidence with cosmic structure formation has added an extra layer of complexity to the problem. I will describe how revisiting/revising some standard assumptions in the theory of gravity can decouple the quantum vacuum from geometry, which can potentially solve the cosmological constant problem. I will then argue that a possible fascinating outcome of such a theory is to relate black hole formation to cosmic acceleration, providing a possible solution to the cosmic coincidence. A diverse range of experimental/observational probes over the next decade will tell us whether we are close to the end of this century-old mystery, which in turn could shed light on the nature of quantum gravity and black holes.
The vacuum landscape of string theory can solve the cosmological constant problem, explaining why the energy of empty space is observed to be at least 60 orders of magnitude smaller than several known contributions to it. It leads to a 'multiverse' in which every type of vacuum is produced infinitely many times, and of which we have observed but a tiny fraction. This conceptual revolution has raised tremendous challenges in particle physics and cosmology. To understand the low-energy physics we observe, and to test the theory, we will need novel statistical tools and effective theories. We must also solve a long-standing fundamental problem in cosmology: how to define probabilities in an infinite universe where every possible outcome, no matter how unlikely, will be realized infinitely many times. This 'measure problem' is inextricably tied to the quantitative prediction of the cosmological constant.
The standard cosmological model features two periods of accelerated expansion: an inflationary epoch at early times, and a dark energy dominated epoch at late times. These periods of accelerated expansion can lead to surprisingly strong constraints on models with extra dimensions. I will describe new mathematical results which enable one to reconstruct features of a higher-dimensional theory based on the behaviour of the accelerating four-dimensional cosmology. When applied to inflation, these results pose several interesting questions for the construction of concrete models. When applied to dark energy, they provide a new technique to combine measurements of dark energy parameters and constraints on variation of Newton's constant. This technique can transform near-future dark energy surveys into become powerful probes of extra dimensional physics.
Weak lensing has emerged as a powerful probe of fundamental physics such as dark energy and dark matter. After briefly reviewing the standard argument for the power of lensing, I present a variety of surprises: some quantities that are supposedly simple measures of cosmic shear are actually polluted by other effects and some quantities apparently unrelated to lensing are contaminated by lensing. These effects may lead to opportunities to strengthen the constraints lensing will place on dark energy.
If Dark Energy is dynamical, it would indicate the existence of new physics beyond the standard model coupled to gravity. I will argue that the best motivated models of this new physics are all tied to whatever resolves the cosmological constant problem, and discuss the cosmological implications of several proposals that have been put forward in this vein.