
Format results
Topological Boundary Modes from Quantum Electronics to Classical Mechanics
Charles Kane University of Pennsylvania
Using quantum computing techniques to detect dark matter axions
Aaron Chou New York University (NYU)
The Alleged Small-Scale Problems of LambdaCDM
Julio Navarro University of Victoria
Understanding the Emergence of Chiral Spin Liquids in Mott Insulators
Ciaran Hickey University of Toronto
Many-body physics in a trapped ion quantum simulator
Kazi-Rajibul Islam Institute for Quantum Computing (IQC)
Quantum critical responses via holographic models and conformal perturbation theory
We investigate response functions near quantum critical points, allowing for finite temperature and a mild deformation by a relevant scalar. When the quantum critical point is described by a conformal field theory, we use conformal perturbation theory and holography to determine the two leading corrections to the scalar two-point function and to the conductivity. We build a bridge between the couplings fixed by conformal symmetry with the interaction couplings in the gravity theory. We construct a minimal holographic model that allows us to numerically obtain the response functions at all frequencies, independently confirming the corrections to the high-frequency response functions. In addition to probing the physics of the ultraviolet, the holographic model probes the physics of the infrared giving us qualitative insight into new physics scalings.Relative entropy with a twist
Matthew Beach Amazon.com
Quantum relative entropy is a measure of the indistinguishability of two quantum states in the same Hilbert space. I will discuss the relative entropy between a state with periodic boundary conditions and one with twisted boundary conditions for a free 1+1 CFT with c=1. I will also highlight the unresolved discrepancy between analytic and numeric results.Quasi-Conformal Quantum Error Correction Codes
Existing proposals for topological quantum computation have encountered
difficulties in recent years in the form of several ``obstructing'' results.
These are not actually no-go theorems but they do present some serious
obstacles. A further aggravation is the fact that the known topological
error correction codes only really work well in spatial dimensions higher
than three. In this talk I will present a method for modifying a higher
dimensional topological error correction code into one that can be embedded
into two (or three) dimensions. These projected codes retain at least some
of their higher-dimensional topological properties. The resulting subsystem
codes are not discrete analogs of TQFTs and as such they evade the usual
obstruction results. Instead they obey a discrete analog of a conformal
symmetry. Nevertheless, there are real systems which have these features,
and if time permits I'll discuss some of these. Many of them exhibit
strange low temperature behaviours that might even be helpful for
establishing finite temperature fault tolerance thresholds.
This research is still very much a work in progress... As such it has
numerous loose ends and open questions for further investigation. These
constructions could also be of interest to quantum condensed matter
theorists and may even be of interest to people who like weird-and-wonderful
spin models in general.Donaldson-Thomas transformations for moduli spaces of local systems on surfaces
Kontsevich and Soibelman defined Donaldson-Thomas invariants of a 3d Calabi-Yau category with a stability condition. Any cluster variety gives rise to a family of such categories. Their DT invariants are encapsulated in single formal automorphism of the cluster variety, called the DT-transformation. An oriented surface S with punctures, and a finite number of special points on the boundary give rise to a moduli space, closely related to the moduli space of PGL(m)-local systems on S, which carries a canonical cluster Poisson variety structure. We determine the DT-transformation of this space. This is a joint work with Alexander Goncharov.
Topological Boundary Modes from Quantum Electronics to Classical Mechanics
Charles Kane University of Pennsylvania
Over the past several years, our understanding of topological electronic phases of matter has advanced dramatically. A paradigm that has emerged is that insulating electronic states with an energy gap fall into distinct topological classes. Interfaces between different topological phases exhibit gapless conducting states that are protected topologically and are impossible to get rid of. In this talk we will discuss the application of this idea to the quantum Hall effect, topological insulators, topological superconductors and the quest for Majorana fermions in condensed matter. We will then show that similar ideas arise in a completely different class of problems. Isostatic lattices are arrays of masses and springs that are at the verge of mechanical instability. They play an important role in our understanding of granular matter, glasses and other 'soft' systems. Depending on their geometry, they can exhibit zero-frequency 'floppy' modes localized on their boundaries that are insensitive to local perturbations. The mathematical relation between this classical system and quantum electronic systems reveals an unexpected connection between theories of hard and soft matter.
Using quantum computing techniques to detect dark matter axions
Aaron Chou New York University (NYU)
Quantum non-demolition measurements performed using qubit-based artificial atoms may enable the next generation of higher mass dark matter axion search experiments. These QND measurements can precisely determine the amplitude of the photon wave sourced by the dark matter axions while placing the back reaction noise into the phase quadrature. By evading the standard quantum limit of phase-preserving amplifiers, the QND photon can potentially reduce readout noise by orders of magnitude. Combined with the radio frequency quantum buses to extract the signals, the next generation axion dark matter detector may closely resemble or actually be a multi-qubit quantum computer.
The Alleged Small-Scale Problems of LambdaCDM
Julio Navarro University of Victoria
The Lambda Cold Dark Matter framework successfully accounts for observational constraints on large (> 1 Mpc) scales, from the clustering of galaxies to the angular dependence of the Cosmic Microwave Background to the structure and matter content of galaxy clusters. On the scale of individual galaxies and, in particular, of dwarf systems much fainter than the Milky Way, a number of apparent conflicts with LCDM expectations have been reported. These have prompted the consideration of a number of radical modifications to LCDM, such as the possibility that dark matter might be "self-interacting", or that it might not be “cold”. I will review the status of these alleged problems and will report on recent work that reevaluates the observational evidence and reexamines the role of systematic uncertainties in the comparison between observation and model predictions. In particular, I will propose a possible resolution to the “cusp vs core” problem that requires no cores; an explanation for the mass discrepancy-acceleration relation that requires no changes to LCDM halos; and a plausible tidal origin for the enigmatic population of galaxies inhabiting “extremely cold” dark matter halos, such as the recently discovered Crater 2 satellite.
Ba3Yb2Zn5O11: A model system for anisotropic exchange on the breathing pyrochlore lattice
Jeffrey Rau University of Toronto
In this talk we present a study of the “breathing” pyrochlore compound Ba3Yb2Zn5O11. Due to the nearly decoupled nature of its tetrahedral units, this compound serves as an ideal testbed for exploring the nature of anisotropic exchange in a theoretically and experimentally tractable rare-earth system. The relevant low-energy model of the Yb3+ tetrahedra is parametrized by four anisotropic exchange constants and is capable of reproducing the inelastic neutron scattering data, specific heat, and magnetic susceptibility with high fidelity. Using this model, we predict the appearance of an unusual non-Kramers octupolar paramagnet at low temperatures. We further speculate on possible collective, inter-tetrahedron physics of these non-Kramers doublets and discuss applications to about anisotropic exchange in other rare-earth magnets.Experimental evidence for field induced emergent clock anisotropies in the XY pyrochlore Er2Ti2O7
Jonathan Gaudet McMaster University
The XY pyrochlore Er2Ti2O7 has garnered much attention due to the possibility that its ground state selection could originate from an order-by-disorder mechanism [1,2]. However, recently, theoretical work has exploited the fact that the symmetry breaking in this system is a rare case of high discrete symmetry (Z6) [3]. This work studied the effect of a magnetic field on the Z6 symmetry breaking and predicted rich and controllable magnetothermodynamic properties. Indeed, the authors predict numerous domains transitions in the low field regime that strongly depends on the field direction. In this talk, I will present neutron scattering data on Er2Ti2O7 with a magnetic field applied along different high symmetry directions which provides the first experimental evidence for this rich Z6 domain phase behavior [4].Understanding the Emergence of Chiral Spin Liquids in Mott Insulators
Ciaran Hickey University of Toronto
In recent years, there has been a resurgence of interest in the study of chiral spin liquids (CSLs), topologically ordered states of matter that are closely related to the celebrated fractional quantum Hall states. This resurgence has been driven by the introduction of exact parent Hamiltonians and a number of numerical studies that have identified CSLs in local spin models. However, our understanding of how and why these states emerge is still lacking. I will discuss evidence supporting one particularly intuitive mechanism in which they arise as "quantum-disordered" descendants of certain non-coplanar magnetic parent states, uniting many of the CSLs found so far under a common framework.Many-body physics in a trapped ion quantum simulator
Kazi-Rajibul Islam Institute for Quantum Computing (IQC)
Many-body quantum systems are often hard to simulate on a computer, due to the computational complexity generated by non-classical correlations or entanglement between parts of these systems. An alternate platform is to experimentally simulate non-trivial quantum models on synthetic quantum matter composed of cold atomic systems. These systems exhibit excellent quantum coherence properties due to their isolation from environment, and hence faithfully evolve in time under the prescribed quantum Hamiltonian. In this talk, I will focus on simulating models of quantum magnetism with laser-cooled trapped atomic ions. Two internal states of each ion represent a spin-1/2 system that can be initialized, manipulated, and detected with near perfection by laser beams. Precisely tuned optical dipole forces couple individual spins to the collective vibrational (phonon) states of the ions, which mediate effective spin-spin interactions. By suitably tailoring these couplings, the interactions can be tuned dynamically in magnitude, sign, and range, allowing for the investigation of a large class of problems in quantum many-body physics.