I review the main properties of the Gamma Ray Bursts (GRBs) as possible sources of high energy (E>TeV) neutrinos and confirmed sources of high energy (E>GeV) photons. I discuss the possibility to use the data of neutrino telescopes, such as IceCube and the GeV-photon telescopes, such as Fermi’s LAT, for precision tests of Einstein's Special Relativity as applied to neutrinos and photons. My focus is on possible departures from Special Relativity that can be motivated by models of quantum space-time. I observe that neutrinos which one would not associate to a GRB, when assuming a classical spacetime picture, may well be GRB neutrinos if the possibility that Lorentz invariance is broken at very high energies is taken into account. I outline how future analyses of neutrino data should be done in order to systematically test the Lorentz Invariance Violation possibility. In addition I consider the possibility that Lorentz Invariance Violation might be responsible for the spectral lags that characterize the GeV signal observed for the remarkable GRB130427A. A comparison of these features for GRBs at different redshifts provides some encouragement for a redshift dependence of the effects of the type expected for a quantum-spacetime interpretation, but other aspects of the analysis appear to invite the interpretation as intrinsic properties of GRBs.
Laboratoire de Physique Subatomique et de Cosmologie (LPSC Grenoble)
PIRSA:13070036
In this talk, I'll briefly review some possible observational consequences of loop quantum gravity. I will first address the issue of the closure of the algebra of constraints in holonomy-corrected effective loop quantum cosmology for tensor, vector, and scalar modes. I will underline some unexpected features like a possible change of signature. The associated primordial power spectrum and the basics of the related CMB analysis will be presented. The "asymptotic silence" hypothesis will be mentioned as a promising alternative. Then, I'll address the issue of the probability for inflation and the prediction of its duration from a new perspective. Finally, I'll present some prospect about the evaporation of black holes in LQG.
Since the standard inflationary paradigm is based on quantum field theory on classical space-times, it excludes the Planck era. Using techniques from loop quantum gravity, the theory is extended to overcome this limitations. The new framework sharpens conceptual issues by distinguishing between the true and apparent trans-Planckian difficulties and provides sufficient conditions under which the true difficulties can be overcome within a quantum gravity theory, with interesting lessons for both theory and observations.
Large scale structure contains vastly more Fourier modes than the CMB, and is therefore a promising arena for studying the early universe. One obstacle to using these modes is the non-linearity of structure formation. The amount of weakly coupled information available is therefore very sensitive to scale at which non-linear effects become important and simulations become necessary. Using effective field theory techniques, I will present evidence that the perturbative description of dark matter is much better behaved than previously thought. I will discuss the implications for improving constraints on non-gaussian initial conditions.
Pulsar timing arrays (PTAs), which are currently operating around the world and achieving remarkable sensitivities in the ~1--‐100 nHz band, will observe supermassive black holes (SMBHs) at redshifts z < ~1. Until now, all estimates of the anticipated signal strength of these sources have relied primarily on simulations to predict the relevant merger rates. I will present results from a completely new approach, which combines observational data and a fully self--‐consistent numerical evolution of the galaxy mass function. This method, which we will argue is superior to past estimates in several key ways, predicts a merger rate for massive galaxies that is ~10 times larger than that implied by previous calculations. I will explain why previous methods applied to this problem may systematically underestimate this merger rate, and one way in which our method may overestimate the rate, so that our approach has complementary systematic uncertainties in the worst case, and is an overall improvement in the best case. Finally, I will show that the new rate implies a range of possible signal strengths that is already in mild tension with PTA observations, with our model predicting a detection at the 95% confidence level as early as 2016. This could make PTAs the first instruments to directly detect gravitational waves, and will provide unprecedented information about the dynamics of merging galaxies, and merging bulges and supermassive black holes within those galaxies.
The Atacama Cosmology Telescope (ACT) has mapped the microwave sky to arcminute scales. We present constraints on parameters from the observations at 148 and 217 GHz respectively by ACT from three years of observations. Efficient map-making and spectrum-estimation techniques allow us to probe the acoustic peaks deep into the damping tail, and allow for confirmation of the concordance model, and tests for deviations from the standard cosmological picture. We fit a model of primary cosmological and secondary foreground parameters to the dataset, including contributions from both the thermal and kinetic Sunyaev-Zel'dovich effect, Poisson distributed and correlated infrared sources, radio sources and a term modeling the correlation between the thermal SZ effect and the Cosmic Infrared Background. We will describe the multi-frequency likelihood for the ACT data, and present constraints on a variety of cosmological parameters using this complete dataset, and put these results in context with the recent results from the Planck satellite.
I explore the possibility that semi-classical back-reaction, due to the partners of the Hawking radiation quanta accumulating over the time for the black hole to lose about one half of its mass (the Page time), might cause the trapped surfaces to disappear, permitting unitary evolution without any cloning of quantum information.