Brane worlds may provide insight into the cosmological constant problem because a large vacuum energy on the brane can curve the extra dimensions rather than the local 4D spacetime. Moreover, such models with supersymmetric large extra dimensions reveal a tantalizing numerology, in which the size of the two extra dimensions can lead not only to the electroweak hierarchy but also to the observed dark energy scale. I will review this proposal, its promises and problems, and then describe some of the novel physics that can arise in 6D brane worlds. The dynamical stability of models in 6D supergravity constrains the matter content of the theory, but surprisingly this can be relaxed with negative tension branes. Meanwhile, the Kaluza-Klein mass gap can remain finite even in the infinite volume limit.
One of the possible explanations for the current acceleration of the universe comes from a coupling between the Dark Energy and the Neutrino sectors. This coupling causes the neutrino mass to vary with cosmic time, what opens a new window to constrain this dark energy candidate. In this work, we analyze the mass-varying neutrino scenario in a model independent way, focusing on its effects for the Cosmic Microwave Background and Large Scale Structure.
A modification of Gravity in the low-curvature regime may account for the late time acceleration of our universe, and is therefore an interesting alternative to Dark Energy.In such models, the modified Einstein equations admit self-accelerated solutions in the presence of negligible matter. At the level of perturbation theory,the modified equations give rise to new dynamics for the perturbations of the metric and matter. I will consider scalar perturbations, presenting in some details the dynamics of linear perturbations for two specific models, f(R) Gravity and Modified Source Gravity. I will conclude by demonstrating how some characteristic features of these models are likely to be common to general models of Modified Gravity and how Large Scale Structure formation and the Integrated Sachs Wolfe effect might be useful probes to distinguish between Dark Energy and Modified Gravity.
I will present the embedding of runaway quintessence models in supergravity coupled to observable matter and hidden supersymmetry breaking. Serious obstructions appear either in the gravitational sector of the theory or cosmologically. Alternatives will be discussed.
We explore the hypothesis that a dynamical dark energy is related to a time-variation of the fundamental mass scale. A dilatation anomaly induced by quantum fluctuations could explain the small value of the present dark energy. Reformulated as a scalar field theory this would predict a quintessence potential which asymptotically relaxes to zero rather than to a nonvanishing constant. An observable consequence of such a scenario results in "early dark energy " contributing a few percent to the energy density of the Universe even at high redshift. Quintessence would be related to a new "fundamental" macroscopic force and induce a small time variation of fundamental constants.
Inferring a quantum system\'s state, from repeated measurements, is critical for verifying theories and designing quantum hardware. It\'s also surprisingly easy to do wrong, as illustrated by maximum likelihood estimation (MLE), the current state of the art. I\'ll explain why MLE yields unreliable and rank-deficient estimates, why you shouldn\'t be a quantum frequentist, and why we need a different approach. I\'ll show how operational divergences -- well-motivated metrics designed to evaluate estimates -- follow from quantum strictly proper scoring rules. This motivates Bayesian Mean Estimation (BME), and I\'ll show how it fixes most of the problems with MLE. I\'ll conclude with a couple of speculations about the future of quantum state and process estimatio
In stochastic treatments of the ERRB set-up, it is equivalent to impose Bell\'s inequalities, a local causality condition, or a certain \"non-contextual hidden variables\" condition. But these conditions are violated by quantum mechanics. On the other hand, it is possible to view quantum mechanics as part of \"quantum measure theory\", a generalization of probability measure theory that allows pair wise interferences between histories whilst banning higher order interference. In this setting, is may be possible find quantum analogues of the three stochastic conditions.
Following this line of inquiry, we will see that quantum measure theory allows no stronger violations of Bell\'s inequalities than does standard quantum theory. We also gain some insights into how to define causality in quantum theory.
Quantum information theory has two equivalent mathematical conjectures concerning quantum channels, which are also equivalent to other important conjectures concerning the entanglement. In this talk I explain these conjectures and introduce recent results.