I will explain how to simulate arbitrary quantum circuits on a distributed quantum computer (DQC), in which the pairs of qubits that are allowed to interact are restricted to the edges of some (connected) graph G. Even for graphs with only a modest number of long-range qubit interactions, such as the hypercube, this simulation is, in fact, efficient. Furthermore, for all graphs, the emulation scheme is very close to being optimal. Secondly I will present an efficient quantum algorithm for parallel unrestricted memory look-up. As an application, I will show that the space-time trade off for Element Distinctness and Collision Finding can be improved. Both results arise from applying the ideas of reversible sorting networks to quantum computing.http://arxiv.org/abs/1207.2307
In this talk we will discuss both the one-photon and
two-photon switching mechanisms in hybrid nanomaterials made from two or more
semiconductor, metallic and optical nanostructures. The most prominent examples
of these nanostructures are graphene, semiconductor quantum dots, metallic
nanoparticles, and photonic and polaritonic crystals. Advances in nanoscience
have allowed for the construction of these new classes of hybrid nanomaterials.
Optical excitations in semiconductor nanostructures are electron-hole pairs
(excitons) whereas excitations in metallic nanostructures are surface plasmons
which are collective oscillations of electrons. Therefore, the combination of
these systems can provide attractive opportunities to modify, design and control
optical properties and to observe new phenomena which are based on
exciton-plasmon interactions. It is expected that this research will provide a
theoretical road map for the development of optical sensing and optical
switching.
We have made a new
measurement of the electron’s electric dipole moment (EDM) using a beam of YbF
molecules. By measuring atto-eV energy shifts in a molecule, this
experiment probes new physics at the tera-eV energy scale. According to the
standard model, this EDM is d_e=10^(-38) e.cm
– some eleven orders of magnitude below the current experimental limit.
However, most extensions to the standard model predict much larger values,
potentially accessible to measurement . Hence, the search for the
electron EDM is a search for physics beyond the standard model. I will describe
our experimental method, our current results and their implications for
particle physics. I will also outline the prospects for further major
improvement in sensitivity.
We construct a
self-consistent model which describes a black hole from formation to
evaporation including the back reaction from the Hawking radiation. In the case
where a null shell collapses, at the beginning the evaporation occurs, but it
stops eventually, and a horizon and singularity appear. On the other hand, in
the generic collapse process of a continuously distributed null matter, the
black hole evaporates completely without forming a macroscopically large
horizon nor singularity. We also find a stationary solution in the heat bath,
which can be regarded as a normal thermodynamic object. (hep-th: 1302.4733)
This talk will begin by discussing one by one the various
reasons why cosmologists today consider the big bang inflationary cosmology to
be the leading, if not proven, theory of the universe and
then explaining
why each of these reasons is flawed. This leads
naturally to the question: what is the alternative? Understanding the flaws helps point the way.
Non-perturbative effects are responsible for the
essential dynamical features of the four-dimensional gauge theories such as
QCD. The N=2 supersymmetric four-dimensional theories are an interesting
class of models in which non-perturbative computations can be carried out with
arbitrary precision using localization of the path integrals. I will explain
the new exact non-perturbative results and the relation to classical and
quantum integrable systems for a large class of N=2 supersymmetric QCD.
In this talk, we will describe our recent
work. Recently, we focus on the thermodynamical property and time
dependence of entanglement entropy. Using holography, we found that the
entanglement entropy for a very small subsystem obeys a property which is
analogous to the first law of thermodynamics when we excite the system. In
relativistic setups, its effective temperature is proportional to the inverse
of the subsystem size. This provides a universal relationship between the
energy and the amount of quantum information. Moreover, we will propose a new
holographic model of local quench and describe some results which we got by
using this model.
This talk is based on arXiv:1212.1164
[hep-th] and arXiv:1302.5703 [hep-th].
It is known that the correlator
of one axial and two vector currents, that receives leading contributions
through one-loop fermion triangle diagrams, is not modified by QCD radiative
corrections at two loops. It was suggested that this non-renormalization of the
VVA correlator persists in higher orders in perturbative QCD as well. To check
this assertion, I compute the three-loop QCD corrections to the
VAA-correlator using the technique of asymptotic expansions. I find that
these corrections do not vanish and that they are proportional to the QCD
beta-function. I will also review some properties of the VVA correlator that were discovered in recent years.
As black holes accrete surrounding gas, they often
produce relativistic, collimated outflows, or jets. Jets are expected to form
in the black hole vicinity making them powerful probes of strong-field gravity.
However, how jet properties are connected to black hole and accretion flow
properties has been unclear. Recent progress in computer simulations of black
hole accretion enables studies of jet formation in unprecedented detail. For
the first time, 3D general relativistic magnetohydrodynamic numerical
simulations allow one to determine the maximum efficiency with which accretion
onto black holes can power relativistic jets. I will present the dependence of
this maximum efficiency on black hole spin and discuss how this dependence
allows one to probe strong-field gravity. In realistic astrophysical systems,
the angular momentum vector of the accretion flow can be tilted relative to the
spin of the black hole. I will present the first simulations of jets from such
tilted accretion systems and discuss their observational signatures.
Neutron stars possess the strongest gravitational fields
among stellar objects in the Universe that are not surrounded by a horizon.
This causes the emission from their surfaces to be strongly lensed and
deformed. Two upcoming space X-ray missions, ESA's LOFT and NASA's NICER, aim
to use observations of lightcurves from spinning neutron stars to map their
gravitational fields as well as measure their masses and radii. In this talk, I
will discuss some unexpected strong-field phenomena that affect gravitational
lensing in the vicinity of neutron stars. I will then show how we can use these
phenomena to measure strong-field frame dragging and break degeneracies in the
measured neutron-star masses and radii.
Since the quantum Hall effect, the notion of topological
phases of matter has been extended to those that are well-defined (or:
``protected'') in the presence of a certain set of
symmetries, and that exist in dimensions higher than two. In the (fractional)
quantum Hall effects (and in ``chiral'' topological phases in general),
Laughlin's thought experiment provides a key insight into their topological
characterization; it shows a close connection between topological phases and
quantum anomalies.
By taking various examples, I will demonstrate that
quantum anomalies serve as a useful tool to diagnose (and even define)
topological properties of the systems.
For chiral topological phases in (2+1) dimensions and
(3+1) dimensional topological superconductors, I will discuss topological
responses of the system which involve a cross correlation between thermal
transport, angular momentum, and entropy. We also argue that gravitational
anomaly is useful to study symmetry protected topological phases in (2+1)
dimensions.
Matrix
models, random maps and Liouville field
theory are prime tools which connect
random
geometry and quantum gravity in two dimensions. The
tensor track is a new program to extend this
connection to higher dimensions through
the
corresponding notions of tensor models, colored
triangulations and tensor group field theories.