Sound waves with long-distance propagation are both a consequence of hydrodynamics, and a danger to hydrodynamics' very existence, as they violate the assumption of local equilibration. In the talk, I will discuss what the thermally excited sound and shear waves do to viscosity. In 2+1 dimensions, the shear viscosity and the diffusion constant cease being independent transport coefficients. In 3+1 dimensions, the fluctuations render the second-order hydrodynamics invalid.
Constant mean curvature (uniform K) hypersurfaces extend to future null infinity in asymptotically flat spacetimes. With conformal compactification, the entire hypersurface can be covered by a finite spatial grid, eliminating any need an "outgoing wave" boundary condition or for extrapolation to find gravitational wave amplitudes. I will discuss the asymptotic behavior near future null infinity, how this can be simplified by suitable gauge conditions, and how this determines the physical Bondi energy and momentum of the system. Numerical results for how Bowen-York parameters in the conformally flat initial value problem are related to the physical energy and momentum in systems with single and binary black holes will be presented.
We construct a class of entangled supersymmetric states which is used as a non-local resource in the CHSH game. This class of super entangled states is more non-local then maximally entangled states if the supersymmetric degrees of freedom are accessible to measurement.
Consequently, we show that the winning probability for the CHSH game is greater than cos2(pi/8) corresponding to an expected value greater than Tsirelson's bound.
Low-temperature phases of strongly-interacting quantum many-body systems can exhibit a range of exotic quantum phenomena, from superconductivity to fractionalized particles. One exciting prospect is that the ground or low-temperature thermal state of an engineered quantum system can function as a quantum computer. The output of the computation can be viewed as a response, or 'susceptibility', to an applied input (say in the form of a magnetic field). For this idea to be sensible, the usefulness of a ground or low-temperature thermal state for quantum computation cannot be critically dependent on the details of the system's Hamiltonian; if so, engineering such systems would be difficult or even impossible. A much more powerful result would be the existence of a robust ordered phase which is characterised by its ability to perform quantum computation.
I'll discuss some recent results on the existence of such a quantum computational phase of matter. I'll outline some positive results on a phase of a toy model that allows for quantum computation, including a recent result that provides sufficient conditions for fault-tolerance. I'll also introduce a more realistic model of antiferromagnetic spins, and demonstrate the existence of a quantum computational phase in a two-dimensional system. Together, these results reveal that the characterisation of quantum computational matter has a rich and complex structure, with connections to renormalisation and recently-proposed concepts of 'symmetry-protected topological order'.
Classical constraints come in various forms: first and second class, irreducible and reducible, regular and irregular, all of which will be illustrated. They can lead to severe complications when classical constraints are quantized. An additional complication involves whether one should quantize first and reduce second or vice versa, which may conflict with the axiom that canonical quantization requires Cartesian coordinates. Most constraint quantization procedures (e.g., Dirac, BRST, Faddeev) run into difficulties with some of these issues and may lead to erroneous results. The Projection Operator Method involves no gauge fixing, no auxiliary variables of any kind, and can treat simultaneously any and all kinds of constraints. It also admits a phase space path integral formulation with similar features.
I will discuss three ways in which (the string landscape and) eternal inflation is fun: (1) because it motivates revisiting some beautiful, classic calculations; (2) because its global description requires asking novel questions with possible broad ramifications; and (3) because it leads to experimental predictions.
The simplest technicolor model contains would-be Goldstone bosons to provide masses for the observed W and Z particles, replacing the standard Higgs mechanism. Perhaps surprisingly, it also contains an additional Goldstone boson that is a natural dark matter candidate. A recent lattice simulation has confirmed the symmetry-breaking pattern, explored the mass spectrum of the lightest technihadrons, and established an effective field theory.
A recently discovered class of active galactic nuclei, TeV luminous blazars, constitute a small fraction of the power output of black holes. Nevertheless, there are suggestions that unlike the UV and X-ray luminosity of quasars, the very-high energy gamma-ray emission from the TeV blazars can be thermalized on cosmological scales with order unity efficiency, resulting in a potentially dramatic heating of the low-density intergalactic medium. The way in which this occurs, however, imparts a variety of peculiar properties to this novel heating source, resulting in a number of robust cosmological consequences. I will discuss the process by which TeV blazars heat the Universe, the strange properties that this heating has, and the variety of signatures that it has left behind, many of which have already been observed!
Most predictions for binary compact object formation are normalized to the present-day Milky Way population. In this talk, I suggest the merger rate of black hole binaries could be exceptionally sensitive to the ill-constrained fraction of low-metallicity star formation that ever occurred on our past light cone. I discuss whether and how observations might distinguish binary evolution uncertainties from this strong trend, both in the near future with well-identified electromagnetic counterparts and in the more distant future via third-generation gravitational wave detectors.
A family of probability distributions (i.e. a statistical model) is said to be sufficient for another, if there exists a transition matrix transforming the probability distributions in the former to the probability distributions in the latter. The so-called Blackwell-Sherman-Stein Theorem provides necessary and sufficient conditions for one statistical model to be sufficient for another, by comparing their "information values" in a game-theoretical framework. In this talk, I will extend some of these ideas to the quantum case.
I will begin by considering the comparison of ensembles of quantum states in terms of their "information value" in quantum statistical decision problems. In this case, I will prove that one ensemble is "more informative" than another if and only if there exists a suitable processing of the former into the latter.
I will then move on to the comparison of bipartite quantum states in terms of their "nonlocality value" in nonlocal games. In this case, I will prove that one bipartite state is "more nonlocal" than another if and only if the former can be transformed into the latter by local operations and shared randomness, arguing, moreover, that the framework provided by nonlocal games can be useful in understanding analogies and differences between the notions of quantum entanglement and nonlocality.
I will discuss the geometry of heterotic string compactifications with fluxes. The compactifications on 6 dimensional manifolds which preserve N=1 supersymmetry in 4 dimensions must be complex manifolds with vanishing first Chern class, but which are not in general Kahler (and therefore not Calabi-Yau manifolds) together with a vector bundle on the manifold which must satisfy a complicated differential equation. The flux, which can be viewed as a torsion, is the obstruction to the manifold being Kahler. I will describe how these compactifications are connected to the more traditional compactifications on Calabi-Yau manifolds through geometric transitions like flops and conifold transitions. For instance, one can construct solutions by flopping rational curves in a Calabi-Yau manifold in such a way that the resulting manifold is no longer Kahler. Time permitting, I will discuss open problems, for example the understanding of the the moduli space of heterotic compactifications and the related problem of determining the massless spectrum in the effective 4 dimensional supersymmetric field theory. The study of these compactifications is interesting on its own right both in string theory, in order to understand more generally the degrees of freedom of these theories, and also in mathematics. For instance, the connectedness between the solutions is related to problems in mathematics like the conjecture by Mile Reid that complex manifolds with trivial canonical bundle are all connected through geometric transitions.
The 7 TeV LHC run has the potential to shed light on extensions beyond the Standard Model. I will discuss the prospects for finding new colored particles in an optimistic signature for discovery, heavy flavor jets and missing energy. I will illustrate the use of Simplified Models in guiding the organization of searches and presentation of results. Finally, I will discuss finer jet observables, and their possible applications in understanding Standard Model backgrounds and distinguishing new physics in a jet-rich environment.