Superconducting circuits based on Josephson junctions are promising candidates for the implementation of solid-state qubits. In most of the recent experiments on these circuits, the qubits are controlled by a classical field containing a large number of photons. The possibility of coherently coupling these systems to a single photon has been recently suggested, opening the possibility to study analogs of quantum optics in condensed matter systems. I will review one of these proposals based on a superconducting charge qubit fabricated inside a high quality transmission line resonator and will describe its recent experimental realization. When the qubit is brought into resonance with the resonator, vacuum Rabi splitting is observed indicating that the regime of strong coupling has been reached. When the qubit is detuned from the cavity, I will explain how quantum non-demolition measurement can be realized. I will discuss how the measurement process can be quantitatively understood in this regime allowing us to explore the effect of measurement back-action on the qubit and to extract, for the first time in superconducting qubits, large visibility in Rabi oscillations.
Natural critical phenomena are characterized by laminar periods separated by events where bursts of activity take place, and by the interrelated self-similarity of space-time scales and of the event sizes. One example are earthquakes: for this case a new approach to quantify correlations between events reveals new phenomenology. By linking correlated earthquakes one creates a scale-free network of events, which can have applications in hazard assessment. Solar flares are another example of critical phenomenon, where event sizes and time scales are part of a single self-similar scenario: rescaling time by the rate of events with intensity greater than an intensity threshold, the waiting time distributions conform to scaling functions that are independent of the threshold. The concept of self-organized criticality (SOC) is suitable to describe critical phenomena, but we highlight problems with most of the classical models of SOC (usually called sandpiles) to fully capture the space-time complexity of real systems. In order to fix this shortcoming, we put forward a strategy giving good results when applied to the simplest sandpile models.
In this talk I will summarise the recent progress in AdS/CFT due to the construction of the new infinite family of Sasaki-Einstein metrics Y^{p,q}, and their dual superconformal gauge theories. I will review some aspects of Sasaki-Einstein geometry and the main features of the Y^{p,q} metrics. I will then discuss the use of toric geometry to obtain a description of the corresponding Y^{p,q} Calabi-Yau singularities. I will explain how the AdS/CFT dual N=1 supersymmetric gauge theories were constructed using the combined information obtained from the metrics and the toric singularities. A crucial check on the consistency of the construction is provided by the field theory technique of a-maximisation. In the last part of the talk I will briefly discuss the recently formulated geometric dual of this, i.e. "Z-minimisation".
A key issue in the context of (compact) extra dimensions is the one of their stability. Any stabilization mechanism is effective only up to some given energy scale; if they can approach this energy, 4$d observers can excite the fluctuations of the internal space, and probe its existence. Stabilization mechanisms introduce fields in the internal space; perturbations of these fields are mixed with perturbations of the metric, so that their study requires a complete GR treatment. After presenting the general framework, I will then discuss some relevant applications. I will present the exact coupling of the radion to codimension one branes, extending the regime of validity of the results in the literature. I will then focus on de Sitter compactifications, showing that the cosmological expansion has typically the effect of destabilizing the internal space. The final part of the talk will be devoted to related work in progress in less conventional areas of brane models: the localization of gravity towards the IR brane (corresponding to a dual description of emerging gravity from the CFT), and the inclusion of ghost fields in the bulk.
A joint Guelph-Waterloo Gravity Group/Perimeter Institute Seminar --------------------------------------------------------------------------- Observational evidence suggests that the large scale dynamics of the universe is presently dominated by dark energy, meaning a non-luminous cosmological constituent with a negative value of the pressure to density ratio w, which would be unstable if purely fluid, but could be stable if effectively solid with sufficient rigidity. It was suggested by Bucher and Spergel that such a solid constituent might be constituted by an effectively cold (meaning approximately static) distribution of cosmic strings with w=-1/3, or membranes with the observationally favoured value w=-2/3, but it was not established whether the rigidity in such models actually would be sufficient for stabilisation. For cases (exemplified by an approximately O(3) symmetric scalar field model) in which the number of membranes meeting at a junction is even (though not if it is odd) it is easy to obtain an explicit evaluation of the rigidity to density ratio, which is shown to 3/15 in both string and membrane cases, and it is confirmed that this is indeed sufficient for stabilisation.
One of the central critical results in the theory of fault-tolerant quantum computation is that arbitrarily long reliable computation is possible provided the error rate per gate and per time step is below some threshold value. This was proved by a number of groups, but the detailed published proofs are complex and furthermore only hold for concatenation of quantum error-correcting codes able to correct 2 errors per block, while typically the best estimates of the threshold value are based on the 7-qubit code, which only corrects 1 error per block. I will describe recent work by Panos Aliferis, John Preskill, and myself which substantially simplifies existing proofs and applies as well to the concatenated 7-qubit code. The new proof also provides a nice framework in which to attempt to prove relatively high values of the threshold, which so far have only emerged as estimates from simulations
Since the seminal discovery of the neutrino by Cowan and Reines in the late 1950's, intense experimental and theoretical effort has focused on the elucidation of neutrino properties and the role they play in elementary particle physics, astrophysics, and cosmology. Neutrinos are born in the fusion reactions powering our Sun and are thought to be the driving mechanism for supernova explosions. Neutrinos exist in copious amounts as the primordial afterglow of the Big Bang and, if massive, would play a role in the evolution and ultimate fate of the Universe. Central to many of the key issues in neutrino physics is the question of whether neutrinos possess non-zero rest mass. If neutrinos are massive, then one expects flavor mixing to occur in the neutrino sector which could lead to the phenomena of neutrino oscillations and the possibility of CP violation in the neutrino sector. A detailed understanding of the microscopic properties of neutrinos can serve to pave the way to a unified description of the fundamental forces of Nature.
In this talk we assume that Quantum Einstein Gravity (QEG) is the correct theory of gravity on all length scales. We use both analytical results from nonperturbative renormalization group (RG) equations and experimental input in order to describe the special RG trajectory of QEG which is realized in Nature. We identify a regime of scales where gravitational physics is well described by classical General Relativity. Strong renormalization effects occur at both larger and smaller momentum scales. The former are related to the (conjectured) nonperturbative renormalizability of QEG. The latter lead to a growth of Newton's constant at large distances. We argue that this effect becomes visible at the scale of galaxies and could provide a solution to the astrophysical missing mass problem which does not require dark matter. A possible resolution of the cosmological constant problem is proposed by noting that all RG trajectories admitting a long classical regime automatically imply a small cosmological constant.