"Extended" topological field theory generalizes ordinary TQFT to include spacetimes with boundary. Starting from a gauge theory of flat G-connections, and its boundary restriction, I will describe a plan for constructing an extended topological field theory, for any compact Lie group G. This is based on work-in-progress with Jeffrey Morton.
Viscosity is a very old concept which was introduced to physics by Navier in the 19th century. However, in strongly coupled systems, the viscosity is usually difficult to compute. In this talk I will describe how gauge/gravity duality, a by-product of string theory, allows one to compute the viscosity for a class of strongly interacting fluids not too dissimilar to the quark gluon plasma. I will also describe efforts to measure the viscosity and other physical properties of the quark gluon plasma at the Relativistic Heavy Ion Collider.
This course begins with a thorough introduction to quantum field theory. Unlike the usual quantum field theory courses which aim at applications to particle physics, this course then focuses on those quantum field theoretic techniques that are important in the presence of gravity. In particular, this course introduces the properties of quantum fluctuations of fields and how they are affected by curvature and by gravitational horizons. We will cover the highly successful inflationary explanation of the fluctuation spectrum of the cosmic microwave background - and therefore the modern understanding of the quantum origin of all inhomogeneities in the universe (see these amazing visualizations from the data of the Sloan Digital Sky Survey. They display the inhomogeneous distribution of galaxies several billion light years into the universe: Sloan Digital Sky Survey).
After a review of the axiomatic formulation of quantum theory, the generalized operational structure of the theory will be introduced (including POVM measurements, sequential measurements, and CP maps). There will be an introduction to the orthodox (sometimes called Copenhagen) interpretation of quantum mechanics and the historical problems/issues/debates regarding that interpretation, in particular, the measurement problem and the EPR paradox, and a discussion of contemporary views on these topics. The majority of the course lectures will consist of guest lectures from international experts covering the various approaches to the interpretation of quantum theory (in particular, many-worlds, de Broglie-Bohm, consistent/decoherent histories, and statistical/epistemic interpretations, as time permits) and fundamental properties and tests of quantum theory (such as entanglement and experimental tests of Bell inequalities, contextuality, macroscopic quantum phenomena, and the problem of quantum gravity, as time permits).