We propose a new brane world scenario. In our model, the Universe starts as a small bulk filled with a dense gas of branes. The bulk is bounded by two orbifold fixed planes. An initial stage of isotropic expansion ends once a weak potential between the orbifold fixed planes begins to dominate, leading to contraction of the extra spatial dimensions. Depending on the form of the potential, one may obtain either a non-inflationary scenario which solves the entropy and horizon problem, or an improved brane-antibrane inflation model.
Clifton, Bub, and Halvorson claim to be able to derive quantum mechanics from information-theoretic axioms. However, their derivation relies on the auxiliary assumption that the relevant probabilities for measurement outcomes can be represented by the observables (self-adjoint operators) and states of a C*-algebra. There are legitimate probability theories that are not so representable --- in particular, the nonlocal boxes of Popescu and Rohrlich. We explain the impact of nonlocal boxes on the interpretation of the CBH derivation, and we discuss possible generalizations of the CBH derivation in the framework of these more general probability theories.