Format results

13 talksCollection Number C23010
Talk

Quantum Fields and Strings Lecture  230301
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:23030015 
Quantum Fields and Strings Lecture  230302
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:23030016 
Quantum Fields and Strings Lecture  230306
Jaume Gomis Perimeter Institute for Theoretical Physics
PIRSA:23030017 
Quantum Fields and Strings Lecture  230308
Jaume Gomis Perimeter Institute for Theoretical Physics
PIRSA:23030018 
Quantum Fields and Strings Lecture  230310
Jaume Gomis Perimeter Institute for Theoretical Physics
PIRSA:23030019 
Quantum Fields and Strings Lecture  230313
Jaume Gomis Perimeter Institute for Theoretical Physics
PIRSA:23030020 
Quantum Fields and Strings Lecture  230315
Jaume Gomis Perimeter Institute for Theoretical Physics
PIRSA:23030021 
Quantum Fields and Strings Lecture  230320
Davide Gaiotto Perimeter Institute for Theoretical Physics
PIRSA:23030023


Particle Physics (2022/2023)
13 talksCollection Number C23013Talk

Particle Physics Lecture  230301
Asimina Arvanitaki Perimeter Institute for Theoretical Physics
PIRSA:23030055 
Particle Physics Lecture  230303
Asimina Arvanitaki Perimeter Institute for Theoretical Physics
PIRSA:23030056 
Particle Physics Lecture  230306
Asimina Arvanitaki Perimeter Institute for Theoretical Physics
PIRSA:23030057 
Particle Physics Lecture  230308
Asimina Arvanitaki Perimeter Institute for Theoretical Physics
PIRSA:23030058 
Particle Physics Lecture  230310
Asimina Arvanitaki Perimeter Institute for Theoretical Physics
PIRSA:23030059 
Particle Physics Lecture  230313
Asimina Arvanitaki Perimeter Institute for Theoretical Physics
PIRSA:23030060 

Particle Physics Lecture  230320
Junwu Huang Perimeter Institute for Theoretical Physics
PIRSA:23030063


Machine Learning for ManyBody Physics (2022/2023)
13 talksCollection Number C23011Talk

Machine Learning Lecture  230228
Lauren Hayward Perimeter Institute for Theoretical Physics
PIRSA:23020018 
Machine Learning Lecture  230228 pt 2
Lauren Hayward Perimeter Institute for Theoretical Physics
PIRSA:23030033 
Machine Learning Lecture  230302
Lauren Hayward Perimeter Institute for Theoretical Physics
PIRSA:23030029 
Machine Learning Lecture  230306
Lauren Hayward Perimeter Institute for Theoretical Physics
PIRSA:23030038 
Machine Learning Lecture  230307
Lauren Hayward Perimeter Institute for Theoretical Physics
PIRSA:23030030 
Machine Learning Lecture  230309
Lauren Hayward Perimeter Institute for Theoretical Physics
PIRSA:23030031 
Machine Learning Lecture  230314
Lauren Hayward Perimeter Institute for Theoretical Physics
PIRSA:23030032 
Machine Learning Lecture  230320
Lauren Hayward Perimeter Institute for Theoretical Physics
PIRSA:23030040


Quantum Information (2022/2023)
13 talksCollection Number C23009Talk

Quantum Information Lecture  230301
Eduardo MartinMartinez Institute for Quantum Computing (IQC)
PIRSA:23030001 
Quantum Information Lecture  230303
Eduardo MartinMartinez Institute for Quantum Computing (IQC)
PIRSA:23030002 
Quantum Information Lecture  230306
Eduardo MartinMartinez Institute for Quantum Computing (IQC)
PIRSA:23030003 
Quantum Information Lecture  230308
Eduardo MartinMartinez Institute for Quantum Computing (IQC)
PIRSA:23030004 
Quantum Information Lecture  230310
Eduardo MartinMartinez Institute for Quantum Computing (IQC)
PIRSA:23030005 
Quantum Information Lecture  230313
Eduardo MartinMartinez Institute for Quantum Computing (IQC)
PIRSA:23030006 
Quantum Information Lecture  230315
Eduardo MartinMartinez Institute for Quantum Computing (IQC)
PIRSA:23030007 
Quantum Information Lecture  230320
Eduardo MartinMartinez Institute for Quantum Computing (IQC)
PIRSA:23030009


Strong Gravity (2022/2023)
13 talksCollection Number C23012Talk

Strong Gravity Lecture  230228
William East Perimeter Institute for Theoretical Physics
PIRSA:23020020 
Strong Gravity Lecture  230302
William East Perimeter Institute for Theoretical Physics
PIRSA:23030042 
Strong Gravity Lecture  230306
William East Perimeter Institute for Theoretical Physics
PIRSA:23030051 
Strong Gravity Lecture  230307
William East Perimeter Institute for Theoretical Physics
PIRSA:23030043 
Strong Gravity Lecture  230309
William East Perimeter Institute for Theoretical Physics
PIRSA:23030044 
Strong Gravity Lecture  230314
William East Perimeter Institute for Theoretical Physics
PIRSA:23030045 
Strong Gravity Lecture  230316
William East Perimeter Institute for Theoretical Physics
PIRSA:23030046 
Strong Gravity Lecture  230320
William East Perimeter Institute for Theoretical Physics
PIRSA:23030053


Mini introductory course on topological orders and topological quantum computing
2 talksCollection Number C23023Talk

Horizon entropy and the Einstein equation
4 talksCollection Number C23029Talk

Horizon entropy and the Einstein equation  Lecture 20230221
Ted Jacobson University of Maryland, College Park

Horizon entropy and the Einstein equation  Lecture 20230223
Ted Jacobson University of Maryland, College Park

Horizon entropy and the Einstein equation  Lecture 20230228
Ted Jacobson University of Maryland, College Park

Horizon entropy and the Einstein equation  Lecture 20230302
Ted Jacobson University of Maryland, College Park


Mathematical Physics (2022/2023)
12 talksCollection Number C23004Talk

Mathematical Physics Lecture  230110
Giuseppe Sellaroli Perimeter Institute for Theoretical Physics
PIRSA:23010012 
Mathematical Physics Lecture  230112
Giuseppe Sellaroli Perimeter Institute for Theoretical Physics
PIRSA:23010013 
Mathematical Physics Lecture  230113
Giuseppe Sellaroli Perimeter Institute for Theoretical Physics
PIRSA:23010019 
Mathematical Physics Lecture  230117
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23010014 
Mathematical Physics Lecture  230118
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23010022 
Mathematical Physics Lecture  230119
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23010015 
Mathematical Physics Lecture  230124
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23010016 
Mathematical Physics Lecture  230126
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23010017


Quantum Foundations (2022/2023)
13 talksCollection Number C23007Talk

Quantum Foundations Lecture  230109
Lucien Hardy Perimeter Institute for Theoretical Physics
PIRSA:23010046 
Quantum Foundations Lecture  230111
Lucien Hardy Perimeter Institute for Theoretical Physics
PIRSA:23010047 
Quantum Foundations Lecture  230116
Lucien Hardy Perimeter Institute for Theoretical Physics
PIRSA:23010049 
Quantum Foundations Lecture  230118
Lucien Hardy Perimeter Institute for Theoretical Physics
PIRSA:23010050 
Quantum Foundations Lecture  230119
Lucien Hardy Perimeter Institute for Theoretical Physics
PIRSA:23010048 
Quantum Foundations Lecture  230120
Lucien Hardy Perimeter Institute for Theoretical Physics
PIRSA:23010051 
Quantum Foundations Lecture  230123
Lucien Hardy Perimeter Institute for Theoretical Physics
PIRSA:23010052 
Quantum Foundations Lecture  230125
Lucien Hardy Perimeter Institute for Theoretical Physics
PIRSA:23010053


Standard Model (2022/2023)
13 talksCollection Number C23005Talk

Standard Model Lecture  230109
Latham Boyle Perimeter Institute for Theoretical Physics
PIRSA:23010033 
Standard Model Lecture  230111
Latham Boyle Perimeter Institute for Theoretical Physics
PIRSA:23010034 
Standard Model Lecture  230112
Latham Boyle Perimeter Institute for Theoretical Physics
PIRSA:23010043 
Standard Model Lecture  230116
Latham Boyle Perimeter Institute for Theoretical Physics
PIRSA:23010036 
Standard Model Lecture  230118
Latham Boyle Perimeter Institute for Theoretical Physics
PIRSA:23010037 
Standard Model Lecture  230119
Latham Boyle Perimeter Institute for Theoretical Physics
PIRSA:23010044 
Standard Model Lecture  230123
Latham Boyle Perimeter Institute for Theoretical Physics
PIRSA:23010039 
Standard Model Lecture  230125
Latham Boyle Perimeter Institute for Theoretical Physics
PIRSA:23010040


Numerical Methods (2022/2023)
12 talksCollection Number C23003Talk

Numerical Methods Lecture  230110
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23010002 
Numerical Methods Lecture  230111
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23010009 
Numerical Methods Lecture  230112
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23010003 
Numerical Methods Lecture  230117
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23010004 
Numerical Methods Lecture  230119
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23010005 
Numerical Methods Lecture  230120
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23010011 
Numerical Methods Lecture  230124
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23010006 
Numerical Methods Lecture  230126
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23010007


Gravitational Physics (2022/2023)
14 talksCollection Number C23006Talk

Quantum Fields and Strings (2022/2023)
13 talksCollection Number C23010This survey course introduces three advanced topics in quantum fields and strings: anomalies, conformal field theory, and string theory. 
Particle Physics (2022/2023)
13 talksCollection Number C23013This course will cover phenomenological studies and experimental searches for new physics beyond the Standard Model, including: natruralness, extra dimension, supersymmetry, dark matter (WIMPs and Axions), grand unification, flavour and baryogenesis. 
Machine Learning for ManyBody Physics (2022/2023)
13 talksCollection Number C23011This course is designed to introduce machine learning techniques for studying classical and quantum manybody problems encountered in quantum matter, quantum information, and related fields of physics. Lectures will emphasize relationships between statistical physics and machine learning. Tutorials and homework assignments will focus on developing programming skills for machine learning using Python.

Quantum Information (2022/2023)
13 talksCollection Number C23009We will review the notion of information in the most possible general sense. Then we will revisit our definitions of entropy in quantum physics from an informational point of view and how it relates to information theory and thermodynamics. We will discuss entanglement in quantum mechanics from the point of view of information theory, and how to quantify it and distinguish it from classical correlations. We will derive Bell inequalities and discuss their importance, and how quantum information protocols can use entanglement as a resource. We will introduce other notions of quantum correlations besides entanglement and what distinguishes them from classical correlations. We will also analyze measurement theory in quantum mechanics, the notion of generalized measurements and their importance in the processing and transmission of information. We will introduce the notions of quantum circuits and see some of the most famous algorithms in quantum information processing, as well as in quantum cryptography. We will end with a little introduction to the notions of relativistic quantum information and a discussion about quantum ethics.

Strong Gravity (2022/2023)
13 talksCollection Number C23012This course will introduce some advanced topics in general relativity related to describing gravity in the strong field and dynamical regime. Topics covered include properties of spinning black holes, black hole thermodynamics and energy extraction, how to define horizons in a dynamical setting, formulations of the Einstein equations as constraint and evolution equations, and gravitational waves and how they are sourced. 
Mini introductory course on topological orders and topological quantum computing
2 talksCollection Number C23023In this mini course, I shall introduce the basic concepts in 2D topological orders by studying simple models of topological orders and then introduce topological quantum computing based on Fibonacci anyons. Here is the (not perfectly ordered) syllabus.
 Overview of topological phases of matter
 Z2 toric code model: the simplest model of 2D topological orders
 Quick generalization to the quantum double model
 Anyons, topological entanglement entropy, S and T matrices
 Fusion and braiding of anyons: quantum dimensions, pentagon and hexagon identities
 Fibonacci anyons
 Topological quantum computing

Horizon entropy and the Einstein equation
4 talksCollection Number C23029This minicourse of four lectures is an introduction, review, and critique of two approaches to deriving the Einstein equation from hypotheses about horizon entropy.
It will be based on two papers:
 "Thermodynamics of Spacetime: The Einstein Equation of State" arxiv.org/abs/grqc/9504004
 "Entanglement Equilibrium and the Einstein Equation" arxiv.org/abs/1505.04753
We may also discuss ideas in "Gravitation and vacuum entanglement entropy" arxiv.org/abs/1204.6349
Zoom Link: https://pitp.zoom.us/j/96212372067?pwd=dWVaUFFFc3c5NTlVTDFHOGhCV2pXdz09

Mathematical Physics (2022/2023)
12 talksCollection Number C23004This course will cover the mathematical structure underlying classical gauge theory. Previous knowledge of differential geometry is not required. Topics covered in the course include: introduction to manifolds, symplectic manifolds, introduction to Lie groups and Lie algebras; deformation quantisation and geometric quantisation; the matematical structure of field theories; scalar field theory; geometric picture of YangMills theory; symplectic reduction. If time permits, we may also look at the description of gauge theory in terms of principal bundles and the topological aspects of gauge theory. 
Quantum Foundations (2022/2023)
13 talksCollection Number C23007This course will cover the basics of Quantum Foundations under three main headings. Part I – Novel effects in Quantum Theory. A number of interesting quantum effects will be considered. (a) Interferometers: MachZehnder interferometer, ElitzurVaidman bomb tester, (b) The quantumZeno effect. (c) The no cloning theorem. (d) Quantum optics (single mode). HongOuMandel dip. Part II Conceptual and interpretational issues. (a) Axioms for quantum theory for pure states. (b) VonNeumann measurement model. * (c) The measurement (or reality) problem. (d) EPR Einstein’s 1927 remarks, the EinsteinPodolskyRosen argument. (e) Bell’s theorem, nonlocality without inequalities. The Tirolson bound. (f) The KochenSpecker theorem and related work by Spekkens (g) On the reality of the wavefunction: Epistemic versus ontic interpretations of the wavefunction and the PuseyBarrettRudolph theorem proving the reality of the wave function. (h) Gleason’s theorem. (i) Interpretations. The landscape of interpretations of quantum theory (the Harrigen Spekkens classification). The de BroglieBohm interpretation, the many worlds interpretation, wavefunction collapse models, the Copenhagen interpretation, and QBism. Part III Structural issues. (a) Reformulating quantum theory: I will look at some reformulations of quantum theory and consider the light they throw on the structure of quantum theory. These may include time symmetric quantum theory and weak measurements (Aharonov et al), quantum Bayesian networks, and the operator tensor formalism. (b) Generalised probability theories: These are more general frameworks for probabilistic theories which admit classical and quantum as special cases. (c) Reasonable principles for quantum theory: I will review some of the recent work on reconstructing quantum theory from simple principles. (d) Indefinite causal structure and indefinite causal order. Finally I will conclude by looking at (i) the close link between quantum foundations and quantum information and (ii) possible future directions in quantum gravity motivated by ideas from quantum foundations.

Standard Model (2022/2023)
13 talksCollection Number C23005Topics will include: Nonabelian gauge theory (aka YangMills theory), the Standard Model (SM) as a particular nonabelian gauge theory (its gauge symmetry, particle content, and Lagrangian, Yukawa couplings, CKM matrix, 3 generations), spontaneous symmetry breaking: global vs local symmetries (Goldstone's Theorem vs Higgs Mechanism; mass generation for bosons and fermions), neutrino sector (including righthanded neutrinos?), effective field theory, Feynman rules (Standard Model propagators and vertices), gauge and global anomalies, strong CP problem, renormalization group (beta functions, asymptotic freedom, quark confinement, mesons, baryons, Higgs instability, hierarchy problem), unexplained puzzles in the SM, and surprising/intriguing aspects of SM structure that hint at a deeper picture. 
Numerical Methods (2022/2023)
12 talksCollection Number C23003This course teaches basic numerical methods that are widely used across many fields of physics. The course is based on the Julia programming language. Topics include an introduction to Julia, linear algebra, Monte Carlo methods, differential equations, and are based on applications by researchers at Perimeter. The course will also teach principles of software engineering ensuring reproducible results. 
Gravitational Physics (2022/2023)
14 talksCollection Number C23006The main objective of this course is to discuss some advanced topics in gravitational physics and its applications to high energy physics. Necessary mathematical tools will be introduced on the way. These mathematical tools will include a review of differential geometry (tensors, forms, Lie derivative), vielbeins and Cartan’s formalism, hypersurfaces, GaussCodazzi formalism, and variational principles (EinsteinHilbert action & GibbonsHawking term). Several topics in black hole physics including the Kerr solution, black hole astrophysics, higherdimensional black holes, black hole thermodynamics, Euclidean action, and Hawking radiation will be covered. Additional advanced topics will include domain walls, brane world scenarios, KaluzaKlein theory and KK black holes, GregoryLaflamme instability, and gravitational instantons