Cosmologists at Perimeter Institute seek to help pin down the constituents and history of our universe, and the rules governing its origin and evolution. Many of the most interesting clues about physics beyond the standard model (e.g., dark matter, dark energy, the matter/anti-matter asymmetry, and the spectrum of primordial density perturbations], come from cosmological observations, and cosmological observations are often the best way to test or constrain a proposed modification of the laws of nature, since such observations can probe length scales, time scales, and energy scales that are beyond the reach of terrestrial laboratories.
The TeV energy range is a privileged part of the EM spectrum for astrophysical observations, allowing a view of some of the most energetic processes in the Universe, in objects as diverse as supernova remnants and black-hole driven Active Galactic Nuclei. Driven by new instruments, TeV gamma-rays astrophysics has made enormous strides in recent years with the discovery of many new sources, including new classes of sources such as galactic micro-quasars. This talk will give an overview of the state of TeV gamma-ray astrophysics, including the air Cherenkov technique used by ground-based TeV gamma ray detectors, the new instruments in operation or coming on line soon, and some of the results already obtained.
It is shown that inflationary cosmology may be used to test the statistical predictions of quantum theory at very short distances. Hidden-variables theories, such as the pilot-wave theory of de Broglie and Bohm, allow the existence of vacuum states with non-standard field fluctuations (quantum non-equilibrium). It is shown that such non-equilibrium vacua lead to statistical anomalies, such as a breaking of scale invariance for the primordial power spectrum. The results depend only weakly on the details of the de Broglie-Bohm dynamics. Recent observations of the cosmic microwave background are used to set limits on violations of quantum theory in the early universe.
From the Quantum Field Theory point of view, matter and gauge fields are generally expected to be localised around branes (topological defects) occurring in extra dimensions. I will discuss a simple scenario where, by starting with a five dimensional SU(3) gauge theory, we end up with several 4-D parallel braneworlds with localised 'chiral' fermions and gauge fields to them. I will show that it is possible to reproduce the electroweak model confined to a single brane, allowing a simple and geometrical approach to the hierarchy problem. Some nice results of this construction are: Gauge and Higgs fields are unified at the 5-D level; and new particles are predicted: a left-handed neutrino (with zero-hypercharge) and a massive vector field coupling together the new neutrino to other leptons.
Up to 90% of matter in the Universe could be composed of heavy particles, which were non-relativistic, or 'cold', when they froze-out from the primordial soup. I will review current searches for these hypothetical particles, both via elastic scattering from nuclei in deep underground detectors, and via the observation of their annihilation products in the Sun, galactic halo and galactic center. The emphasis will be on most recent results, and on comparison with reaches of future particle colliders, such as the LHC and ILC.
Cosmic strings are a generic by-product of string theory models of the inflationary epoch. These new cosmic "superstrings," as they are called, are distinct from the grand unified strings once thought to generate large scale structure. I will discuss what limits the WMAP and SDSS data have already placed on the properties of networks of cosmic strings, as well as avenues for their direct detection. I will also introduce cosmic superstrings' distinctive properties: they can bind into a possibly infinite number of higher-tension states, leading to the possibility of network frustration and for a high- string-tension UV-catastrophe. An analytical model constructed by myself and others has shown that superstring networks can evade these catastrophes under certain assumptions for the dynamics of string binding. I will describe ongoing work to verify numerically these binding dynamics. Finally, I will characterize several observational signatures that I and collaborators have identified that could allow us to discriminate between cosmic superstrings and other kinds of cosmic strings.
We study the generation of cosmological perturbations during the Hagedorn phase of string gas cosmology. Using tools of string thermodynamics we provide indications that it may be possible to obtain a nearly scale-invariant spectrum of cosmological fluctuations on scales which are of cosmological interest today. In our cosmological scenario, the early Hagedorn phase of string gas cosmology goes over smoothly into the radiation-dominated phase of standard cosmology, without having a period of cosmological inflation. Furthermore, we find that string thermodynamics implies that the fluctuations are Gaussian, and that the spectrum of tensor perturbations will exhibit a scale-invariant spectrum as well. We contrast the predictions of string gas cosmology in the Hagedorn phase with that of scalar field driven inflation, and comment on the possibility of observationally distinguishing between the two scenarios in future experiments.
A definite prediction of string theory is the existence of a scalar field, the dilaton. The presence of the dilaton generally leads to strong violations of the equivalence principle and thus describe a kind of gravitational force radically different from what we experience. String loop corrections, however, may render phenomenologically acceptable the region of the theory characterized by large values of the dilaton field i.e. the region with a strong tree level-coupling. Interestingly, in this framework, violations of the (weak) equivalence principle should be observed in the next satellite-based generation of experiments. A dilaton running towards infinity can also play the role of coupled dark energy and ease the so-called "cosmic coincidence" problem.
The theory of cosmological perturbations provides a bridge between theoretical models of the early universe (often motivated by string theory) and astrophysical observation, e.g of the CMBR. Since extra dimensions are pivotal to string theory, the known lore of perturbation theory needs to be adjusted accordingly. After introducing the needed formalism, I will illustrate its use on an example within the framework of String Gas Cosmology
The origin of the chemical elements that make up our world is one of the oldest most fundamental scientific questions. The universe after the Big Bang consisted only of hydrogen and helium with traces of lithium. All the other elements, including the carbon in our bodies, the iron, silicon, and oxygen that makes up most of our earth, have been created later by nuclear reactions in stars. However, the origin of many elements beyond iron, including gold and uranium, is still a mystery. These elements are attributed to a process called the r-process (rapid neutron capture process) which is of fundamental importance in explaining the origin of stable nuclei and isotopes beyond the iron group (A>90-100). The site of the r process is not known but supernova explosions and/or colliding neutron stars are prime suspects. The problem is that none of the models (related to these sites) can produce r-process elements in the correct proportions as we find them, for example, in the solar system or in certain very old stars. I will discuss an exciting alternative related to quark stars, a new class of compact stars that contain matter at the highest densities. Proposed observational features of quark stars, the probability of their detection, as well as some interesting connections to r-process nucleosynthesis will be presented. I will focus on an alternative based on a dynamical picture of decompressing neutron matter from the surface of quark stars in the scenario termed the Quark-Nova, which is particularly effective for producing the r-process pattern of heavy elements.