The dialogue between quantum information and quantum matter has fostered notable progress in both fields. Quantum information science has revolutionized our understanding of the structure of quantum many-body systems and novel forms of out-of-equilibrium quantum dynamics. The advances of quantum matter have provided novel paradigms and platforms for quantum information processing.
This conference aims to bring together leading experts at the intersections of quantum information and quantum matter. Key topics include: (i) quantum error correction, (ii) quantum dynamics, and (iii) quantum simulation.
Organizers:
Timothy Hsieh, Perimeter Institute
Beni Yoshida, Perimeter Institute
Zhi Li, Perimeter Institute
Tsung-Cheng Lu, Perimeter Institute
Meenu Kumari, National Research Council Canada
:: :: ::
Format results
-
-
Repetition Code Revisited
University of California, Santa Barbara -
-
Stability of mixed-state quantum phases via finite Markov length
Stanford University -
The rise and fall of mixed-state entanglement: measurement, feedback, and decoherence
University of Maryland, College Park -
Universal bound on topological gap
Massachusetts Institute of Technology (MIT) - Department of Physics -
Mapping ground states to string-nets
Massachusetts Institute of Technology (MIT) -
Sequential Quantum Circuit
California Institute of Technology -
How much entanglement is needed for quantum error correction?
Perimeter Institute for Theoretical Physics -
Entanglement-based probes of topological phases of matter
University of Chicago -
Certifying almost all quantum states with few single-qubit measurements
California Institute of Technology (Caltech) -
Defining stable steady-state phases of open systems
Princeton University