Mathematical physics, including mathematics, is a research area where novel mathematical techniques are invented to tackle problems in physics, and where novel mathematical ideas find an elegant physical realization. Historically, it would have been impossible to distinguish between theoretical physics and pure mathematics. Often spectacular advances were seen with the concurrent development of new ideas and fields in both mathematics and physics. Here one might note Newton's invention of modern calculus to advance the understanding of mechanics and gravitation. In the twentieth century, quantum theory was developed almost simultaneously with a variety of mathematical fields, including linear algebra, the spectral theory of operators and functional analysis. This fruitful partnership continues today with, for example, the discovery of remarkable connections between gauge theories and string theories from physics and geometry and topology in mathematics.
Format results
-
Perimeter Institute for Theoretical Physics
-
Galois calculations using Magma
Queen Mary - University of London (QMUL) -
Mathematical Physics - Lecture 15
Washington University in St. Louis -
Mathematical Physics - Lecture 14
Washington University in St. Louis -
Mathematical Physics - Lecture 13
Washington University in St. Louis -
Mathematical Physics - Lecture 12
Washington University in St. Louis -
Mathematical Physics - Lecture 11
Washington University in St. Louis -
Mathematical Physics - Lecture 10
Washington University in St. Louis -
Mathematical Physics - Lecture 9
Washington University in St. Louis -
Mathematical Physics - Lecture 8
Washington University in St. Louis -
Mathematical Physics - Lecture 7
Washington University in St. Louis -
Mathematical Physics - Lecture 6
Washington University in St. Louis