Non-relativistic quantum mechanics is derived as an example of entropic inference. The basic assumption is that the position of a particle is subject to an irreducible uncertainty of unspecified origin. The corresponding probability distributions constitute a curved statistical manifold. The probability for infinitesimally small changes is obtained from the method of maximum entropy and the concept of time is introduced as a book-keeping device to keep track of how they accumulate. This requires introducing appropriate notions of instant and of duration. A welcome feature is that this entropic notion of time incorporates a natural distinction between past and future. The Schroedinger equation is recovered when the statistical manifold participates in the dynamics in such a way that there is a conserved energy: its curved geometry guides the motion of the particles while they, in their turn, react back and determine its evolving geometry. The phase of the wave function—not just its magnitude—is explained as a feature of purely statistical origin. Finally, the model is extended to include external electromagnetic fields and gauge transformations.
The seminar is devoted to the solution of the AdS/CFT spectral problem, both for infinite and finite volume cases, using integrability. The basic constructions will be explained using an analogy with the relativistic O(4) sigma model. We devote a special attention to the study of the so called dressing factor. This is a scalar factor of the scattering matrix fixed using discrete crossing symmetry. We will show how to explicitly solve the equations dictated by the crossing symmetry, discuss essential properties of the dressing factor and give a shorthand and suggestive notation for the Bethe Ansatz of AdS/CFT. Then we will sketch a shorthand way to pass from the Bethe Ansatz to the Y-system.
Dark matter, constituting a fifth of the mass-energy in the Universe today, is one of the major "known unknowns" in physics. A number of different experimental and observational techniques exist to try to identify dark matter. However, these techniques are not only sensitive to the "physics" of dark matter (mass, cross sections, and the theory in which the dark matter particles live) but to the "astrophysics" of dark matter as well, namely the phase-space density of dark matter throughout the Milky Way and other galaxies and its evolution through cosmic time.
In order to accurately map signals in experiments or observations to the particle-physics properties of dark matter, we need to understand the astrophysics of dark matter. In this talk, I will demonstrate how to get robust constraints on the particle-physics properties of dark matter either by careful modeling the astrophysics properties of dark matter or by elevating the astrophysics properties of dark matter as something to be extracted from future data sets alongside particle-physics parameters, and which approach (modeling vs. empirical) is more useful for given problems.
As an example, I will show which aspects of the local dark-matter phase-space density can be understood through modeling and which aspects may be possible to infer empirically, and what the implications are for determining the particle-physics of dark matter from direct and indirect detection.
The arrow of time dilemma: the laws of physics are invariant for time inversion, whereas the familiar phenomena we see everyday are not (i.e. entropy increases). I show that, within a quantum mechanical framework, all phenomena which leave a trail of information behind (and hence can be studied by physics) are those where entropy necessarily increases or remains constant. All phenomena where the entropy decreases must not leave any information of their having happened. This situation is completely indistinguishable from their not having happened at all. In the light of this observation, the second law of thermodynamics is reduced to a mere tautology: physics cannot study those processes where entropy has decreased, even if they were commonplace. I will discuss the possible limitations that stem from recent typicality results in employing this as a complete self-consistent solution to the arrow of time dilemma.
I will discuss distinctions between dark energy and modified gravity explanations of cosmic acceleration from the horizon scale to the deeply non-linear regime using the modified action f(R) and braneworld DGP models as worked toy examples.
We have announced the results from 7 years of observations of the Wilkinson Microwave Anisotropy Probe (WMAP) on January 26. In this talk we will present the cosmological interpretation of the WMAP 7-year data, including the detection of primordial helium, images of polarization of microwave background around temperature peaks, and new limits on inflation and properties of neutrinos. We also report a significant detection of the Sunyaev-Zel'dovich effect and discuss implications for the gas pressure in clusters of galaxies.
A systematic method to construct 4d N=2 supersymmetric theories by compactifying M5-branes on a Riemann surface was found by Gaiotto last year.
This suggests that any physical quantity of the 4d theory should be reflected in another physical quantity of the 2d theory living on the Riemann surface.
Indeed, one finds that the instanton partition function of the 4d theories equals the conformal blocks of the 2d theory.
I would like to illustrate this construction through explicit examples.
Many putative explanations in physics rely on idealized models of physical systems. These explanations are inconsistent with standard philosophical accounts of explanation. A common view holds that idealizations can underwrite explanation nonetheless, but only when they are what have variously been called Galilean, approximative, traditional or controllable. Controllability is the least vague of these categories, and this paper focuses on the relation between controllability and explanation. Specifically, it argues that the common view is an untenable half-measure. It gives the example of a simple pendulum with quadratic damping, an uncontrollable idealization that makes use of singular limits and for which the behaviour at the limit is qualitatively new—but a system whose behaviour is fully explained in terms of the idealization. It shows that uncontrollable idealizations can have explanatory capacities (and in a way distinct from Batterman’s “asymptotic explanation”).
Frustrated magnets are materials in which localized magnetic moments, or spins, interact through competing exchange interactions that cannot be simultaneously satisfied, giving rise to a large degeneracy of the system ground state. Under certain conditions, this can lead to the formation of fluid-like states of matter, so-called spin liquids, in which the constituent spins are highly correlated but still fluctuate strongly down to a temperature of absolute zero. The fluctuations of the spins in a spin liquid can be classical or quantum and show remarkable collective phenomena such as emergent gauge fields and fractional particle excitations. This exotic behaviour is now being uncovered in the laboratory, providing insight into the properties of spin liquids and challenges to the theoretical description of these materials.
We present a holographic description of four-dimensional single-scalar inflationary universes in terms of a three-dimensional quantum field theory. The holographic description correctly reproduces standard inflationary predictions in their regime of applicability. In the opposite case, wherein gravity is strongly coupled at early times, we propose a holographic description in terms of perturbative QFT and present models capable of satisfying the current observational constraints while exhibiting a phenomenology distinct from standard inflation. This provides a qualitatively new method for generating a nearly scale-invariant spectrum of primordial cosmological perturbations.
WIMPless dark matter offers an attractive framework in which dark matter can be very light. We investigate the implications of such scenarios on invisible decays of bottomonium states for dark matter with a mass less than around $5 {\rm GeV}$. We relate these decays to measurements of nucleon-dark matter elastic scattering. We also investigate the effect that a coupling to $s$ quarks has on flavor changing $b\to s$ processes involving missing energy.