**Collection Number**S003

**Collection Type**Series

## Entropy Variations and Light Ray Operators from Replica Defects

We study the defect operator product expansion (OPE) of displacement operators in free and interacting conformal field theories using replica methods. We show that as n approaches 1 a contact term can emerge when the OPE contains defect operators of twist d−2. For interacting theories and general states we give evidence that the only possibility is from the defect operator that becomes the stress tensor in the n→1 limit. This implies that the quantum null energy condition (QNEC) is always saturated for CFTs with a twist gap.

## Field theory for gravity at all scales

In this talk I will review the state of the art in PN gravity, and in particular its significant advancement via the EFT of spinning gravitating objects. First, I will introduce the concept of a tower of EFTs for the binary inspiral problem. I will then present the intricate formulation of the EFT of spinning objects. Finally, I will present some advanced results accomplished within this framework.

## Color Confinement, Bose-Einstein Condensation and Holographic Emergent Space

We propose a unified manner of understanding two important phenomena: color confinement in large-N gauge theory, and Bose-Einstein condensation (BEC). We do this by clarifying the relation between the standard criteria, based on the off-diagonal long range order (ODLRO) for the BEC and the Polyakov loop for gauge theory: the constant offset of the distribution of Polyakov line phase is ODLRO.

## A deformation invariant of 1+1D SQFTs

The elliptic genus is a powerful deformation invariant of 1+1D SQFTs: if it is nonzero, then it protects the SQFT from admitting a deformation to one with spontaneous supersymmetry breaking. I will describe a "secondary" invariant, defined in terms of mock modularity, that goes beyond the elliptic genus, protecting SQFTs with vanishing elliptic genus. The existence of this invariant supports the hypothesis that the space of minimally supersymmetric 1+1D SQFTs provides a geometric model for universal elliptic cohomology. Based on joint works with D. Gaiotto and E. Witten.

## Entanglement wedge reconstruction and operator algebras

In order to satisfy the Reeh-Schlieder theorem, I study the infinite-dimensional Hilbert spaces using von Neumann algebras. I will first present the theorem that the entanglement wedge reconstruction and the equivalence of relative entropies between the boundary and the bulk (JLMS) are exactly identical. Then I will demonstrate the entanglement wedge reconstruction with a tensor network model of von Neumann algebra with type II1 factor, which guarantees the equivalence between the boundary and the bulk.

## Holographic Uhlmann Holonomy and the Entanglement Wedge Symplectic Form

Subregion duality is an idea in holography which states that every subregion of the boundary theory has a corresponding subregion in the bulk theory, called the 'entanglement wedge', to which it is dual. In the classical limit of the gravity theory, we expect the fields in the entanglement wedge to permit a Hamiltonian description involving a phase space and Poisson brackets. In this talk, I will describe how this phase space arises from the point of view of the boundary theory.

## Defect Monstrous Moonshine

The Monster CFT is a (1+1)d holomorphic CFT with the Monster group global symmetry. The symmetry twisted partition functions exhibit the celebrated Monstrous Moonshine Phenomenon. From a modern point of view, topological defects generalize the notion of global symmetries. We argue that the Monster CFT has a Kramers-Wannier duality defect that is not associated with any global symmetry.

## Electroweak Quintessence Axion Revisited in Light of Swampland Conjectures

It is a curious numerology that the dynamical scale associated with the instanton of the electroweak SU(2) gauge group is approximately the energy scale of dark energy. We revisit this electroweak quintessence axion scenario, taking into account observational as well as swampland constraints.

## Entanglement and extended conformal field theory

Defining entanglement in a continuum field theory is a subtle challenge, because the Hilbert space does not naively factorize into local products.

## Ignorance is Cheap: From Black Hole Entropy To Energy-Minimizing States In QFT

Behind certain marginally trapped surfaces one can construct a geometry containing an extremal surface of equal, but not larger area. This construction underlies the Engelhardt-Wall proposal for explaining the Bekenstein-Hawking entropy as a coarse-grained entropy. The construction can be proven to exist classically but fails if the Null Energy Condition is violated. Here we extend the coarse-graining construction to semiclassical gravity. Its validity is conjectural, but we are able to extract an interesting nongravitational limit.