Format results

Collection Number C23001

Machine Learning for Quantum ManyBody Systems
Collection Number C23002 
Quantum Foundations
Collection Number C23007 
Symmetries Graduate School 2023
Collection Number C23008 
Statistical Physics (2022/2023)
11 talksCollection Number C22038Talk

Quantum Field Theory II (2022/2023)
11 talksCollection Number C22037Talk

Special Topics in Physics  QFT2: Quantum Electrodynamics (Cliff Burgess)
11 talksCollection Number C22043Talk


QFT2  Quantum Electrodynamics  Afternoon Lecture
Cliff Burgess McMaster University


QFT2  Quantum Electrodynamics  Afternoon Lecture
Cliff Burgess McMaster University


QFT2  Quantum Electrodynamics  Afternoon Lecture
Cliff Burgess McMaster University


QFT2  Quantum Electrodynamics  Afternoon Lecture
Cliff Burgess McMaster University


New Frontiers in Machine Learning and Quantum
11 talksCollection Number C22034Talk

QuEra  quantum computing with neutral atoms:
Anna Knorr Perimeter Institute

Gibbs Sampling of Periodic Potentials on a Quantum Computer
Arsalan Motamedi University of Waterloo


Activation of Strong Local Passive States with Quantum Energy Teleportation Protocols

Nayeli Azucena Rodríguez Briones University of California
 Nayeli Rodriquez Briones


Representing quantum states with spiking neural networks

Stefanie Czischek University of Ottawa
 Stefanie Czischek


Quantum hypernetworks
Juan Carrasquilla Vector Institute for Artificial Intelligence

A Study of Neural Network Field Theories
Anindita Maiti Northeastern University

SelfCorrecting Quantum ManyBody Control using Reinforcement Learning with Tensor Networks
Friederike Metz Okinawa Institute of Science and Technology Graduate University


Quantum Matter Workshop
15 talksCollection Number C22033Talk

Unlocking the Universe with quantum materials
Jess McIver University of British Columbia (UBC)

Common features in spinorbit excitations of Kitaev materials
YoungJune Kim University of Toronto

Intrinsically gapless symmetryprotected topology

Andrew Potter University of British Columbia (UBC)
 Andrew Potter


Emergent anomalies and generalized Luttinger theorems in metals and semimetals
Anton Burkov University of Waterloo

Measurement as a shortcut to longrange entangled quantum matter
TsungCheng Lu (Peter) Perimeter Institute for Theoretical Physics

A minimalist's approach to the physics of emergence
Liujun Zou Perimeter Institute for Theoretical Physics

Synthesis of manybody quantum states using groupIV (Ge/Si) quantum devices
Joe Salfi University of British Columbia



Quantum Field Theory I (2022/2023)
14 talksCollection Number C22036Talk





Quantum Field Theory I  Lecture 221031
Gang Xu Perimeter Institute for Theoretical Physics
PIRSA:22100057 
Quantum Field Theory I  Lecture 221028
Gang Xu Perimeter Institute for Theoretical Physics
PIRSA:22100056 
Quantum Field Theory I  Lecture 221026
Gang Xu Perimeter Institute for Theoretical Physics
PIRSA:22100055 
Quantum Field Theory I  Lecture 221024
Gang Xu Perimeter Institute for Theoretical Physics
PIRSA:22100054


Relativity (2022/2023)
14 talksCollection Number C22041Talk

POSTDOC WELCOME 2022
19 talksCollection Number C22042Talk



Session 2  Mohammed Khalil
Mohammed Khalil Perimeter Institute for Theoretical Physics
PIRSA:22100116 






Strings 2023
Collection Number C23001The Perimeter Institute for Theoretical Physics is delighted to host the 33rd installment of Strings, the flagship annual conference for the extended string theory community.
Strings 2023 will take place at PI July 2429. Capacity is limited to 200 inperson attendees. The programming will incorporate an interactive simulcast for virtual attendees.
Save the date!Organizing Committee: Sabrina Pasterski,* Freddy Cachazo, Kevin Costello, Davide Gaiotto, Jaume Gomis, Rob Myers, Pedro Vieira, & Alex Buchel.
Territorial Land Acknowledgement
Perimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.

Machine Learning for Quantum ManyBody Systems
Collection Number C23002Machine learning techniques are rapidly being adopted into the field of quantum manybody physics, including condensed matter theory, experiment, and quantum information science. The steady increase in data being produced by highlycontrolled quantum experiments brings the potential of machine learning algorithms to the forefront of scientific advancement. Particularly exciting is the prospect of using machine learning for the discovery and design of molecules, quantum materials, synthetic matter, and computers. In order to make progress, the field must address a number of fundamental questions related to the challenges of studying manybody quantum mechanics using classical computing algorithms and hardware.
The goal of this conference is to bring together experts in computational physics, machine learning, and quantum information, to make headway on a number of related topics, including:
 Datadrive quantum state reconstruction
 Machine learning strategies for quantum error correction and quantum control
 Neuralnetwork inspired wavefunctions
 Nearterm prospects for data from quantum devices
 Machine learning for quantum algorithm discoveryRegistration will open soon.
Territorial Land AcknowledgementPerimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.

Quantum Foundations
Collection Number C23007This course will cover the basics of Quantum Foundations under three main headings. Part I – Novel effects in Quantum Theory. A number of interesting quantum effects will be considered. (a) Interferometers: MachZehnder interferometer, ElitzurVaidman bomb tester, (b) The quantumZeno effect. (c) The no cloning theorem. (d) Quantum optics (single mode). HongOuMandel dip. Part II Conceptual and interpretational issues. (a) Axioms for quantum theory for pure states. (b) VonNeumann measurement model. * (c) The measurement (or reality) problem. (d) EPR Einstein’s 1927 remarks, the EinsteinPodolskyRosen argument. (e) Bell’s theorem, nonlocality without inequalities. The Tirolson bound. (f) The KochenSpecker theorem and related work by Spekkens (g) On the reality of the wavefunction: Epistemic versus ontic interpretations of the wavefunction and the PuseyBarrettRudolph theorem proving the reality of the wave function. (h) Gleason’s theorem. (i) Interpretations. The landscape of interpretations of quantum theory (the Harrigen Spekkens classification). The de BroglieBohm interpretation, the many worlds interpretation, wavefunction collapse models, the Copenhagen interpretation, and QBism. Part III Structural issues. (a) Reformulating quantum theory: I will look at some reformulations of quantum theory and consider the light they throw on the structure of quantum theory. These may include time symmetric quantum theory and weak measurements (Aharonov et al), quantum Bayesian networks, and the operator tensor formalism. (b) Generalised probability theories: These are more general frameworks for probabilistic theories which admit classical and quantum as special cases. (c) Reasonable principles for quantum theory: I will review some of the recent work on reconstructing quantum theory from simple principles. (d) Indefinite causal structure and indefinite causal order. Finally I will conclude by looking at (i) the close link between quantum foundations and quantum information and (ii) possible future directions in quantum gravity motivated by ideas from quantum foundations.

Symmetries Graduate School 2023
Collection Number C23008The goal of this Winter School on Symmetries is to introduce graduate students to the effectiveness of symmetry principles across subjects and energy scales.
From Noether’s celebrated theorem to the development of the standard model of particle physics, from Landau’s to Wilson’s classification of phases of matter and phase transitions, symmetries have been key to 20th century physics. But in the last decades novel and more subtle incarnations of the symmetry principle have shown us the way to unlocking new and unexpected phases of quantum matter, infrared and holographic properties of the quantum gravitational interaction, as well as to advancements in pure mathematics to mention a few.
The Graduate Winter School on Symmetries will introduce students and young researchers to a variety of applications of the symmetry principle. These will be chosen across contemporary research topics in both theoretical physics and mathematics. Our goal is to create a synergistic environment where ideas and techniques can ultimately spread across disciplines. This will be achieved through a combination of minicourses, colloquia, and discussion sessions led in collaboration with the students themselves.
Territorial Land AcknowledgementPerimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.

Statistical Physics (2022/2023)
11 talksCollection Number C22038The course begins by discussing several topics in equilibrium statistical physics including phase transitions and the renormalization group. The second part of the course covers nonequilibrium statistical physics including kinetics of aggregation, spin dynamics, population dynamics, and complex networks.

Quantum Field Theory II (2022/2023)
11 talksCollection Number C22037The course has three parts. In the first part of the course, the path integral formulation of nonrelativistic quantum mechanics and the functional integral formulation of quantum field theory are developed. The second part of the course covers renormalization and the renormalization group. Finally, nonabelian gauge theories are quantized using functional integral techniques.

Special Topics in Physics  QFT2: Quantum Electrodynamics (Cliff Burgess)
11 talksCollection Number C22043This course uses quantum electrodynamics (QED) as a vehicle for covering several more advanced topics within quantum field theory, and so is aimed at graduate students that already have had an introductory course on quantum field theory. Among the topics hoped to be covered are: gauge invariance for massless spin1 particles from special relativity and quantum mechanics; Ward identities; photon scattering and loops; UV and IR divergences and why they are handled differently; effective theories and the renormalization group; anomalies.

New Frontiers in Machine Learning and Quantum
11 talksCollection Number C22034This workshop will bring together a group of young trendsetters working at the frontier of machine learning and quantum information. The workshop will feature two days of talks, and ample time for participants to interact and form new collaborations in the inspiring environment of the Perimeter Institute. Topics will include machine learning, quantum field theory, quantum information, and unifying theoretical concepts.
Territorial Land AcknowledgementPerimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.

Quantum Matter Workshop
15 talksCollection Number C22033The goal of this conference is for quantum matter researchers at Perimeter, University of British Columbia, and University of Toronto to share their recent work with each other, to facilitate discussion and collaboration.
https://pirsa.org/C22033
Territorial Land AcknowledgementPerimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.

Quantum Field Theory I (2022/2023)
14 talksCollection Number C22036The course starts by looking for a quantum theory that is compatible with special relativity, without assuming fields are fundamental. Nevertheless fields turn out to be a very good, maybe inevitable mathematical tool for formulating and studying such a relativistic quantum theory. The second part of the course introduces the Dirac theory and canonically quantizes it. It also quantizes the Maxwell field theory. The Feynman diagram technique for perturbation theory is developed and applied to the scattering of relativistic fermions and photons. Renormalization of quantum electrodynamics is done to oneloop order.
Prerequisite: PSI Quantum Theory course or equivalently Graduate level Quantum Mechanics and QFT of scalar theory

Relativity (2022/2023)
14 talksCollection Number C22041This is an introductory course on general relativity (GR). We shall cover the basics of differential geometry and its applications to Einstein’s theory of gravity. The plan is to discuss black holes, gravitational waves, and observational evidence for GR, as well as to cover some of the more advanced topics. 
POSTDOC WELCOME 2022
19 talksCollection Number C22042Join us on Monday October 24 to welcome our new cohort of postdocs at Perimeter Institute at the Postdoc Welcome 2022! Each new postdoc will be given 5 minutes to introduce themselves to the PI Community. The time will be used to tell us a little bit about themselves and to showcase their current research. These presentations are very casual and should not be misconstrued as formal talks. Some discussion will follow the presentations, whereby current PI Residents may have the opportunity to ask questions.
Conference Schedule:
9:30AM  11AM  short talks session 1 in Sky room.
11:00AM 11:30AM  coffee break in 1st floor Bistro
11:30AM  1:00PM  short talks session 2 in Sky room.
1:00PM  2:00PM  group lunch in the Bistro in 2nd floor Bistro (new postdocs, postdoc reps)
2:00PM  5:30PM  offsite activity (new postdocs, existing postdocs)https://pirsa.org/C22042
Territorial Land Acknowledgement
Perimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.