The talk concerns a generalization of the concept of a minimum uncertainty state to the finite dimensional case. Instead of considering the product of the variances of two complementary observables we consider an uncertainty relation involving the quadratic Renyi entropies summed over a full set of mutually unbiased bases (MUBs). States which achieve the lower bound set by this inequality were introduced by Wootters and Sussman, who proved existence for every prime power dimension, and by Appleby, Dang and Fuchs who showed that in prime dimension the fiducial vector for a for a symmetric informationally complete positive operator valued measure (SIC-POVM) covariant under the Weyl-Heisenberg group is a state of this kind. Subsequently Sussman proved existence for a class of odd prime power dimensions. The purpose of this talk is to complete the existence proof by showing that minimum uncertainty states exist in every prime power dimension, without exception. Along the way we establish a number of properties of the Clifford group, and Galois extension fields, which might be of some independent interest.
The Great Plague of London, which claimed the lives of one fifth of London\'s population in 1665, is one of the most famous epidemics of all time. We have recently digitized the mortality records for London during the Great Plague, yielding weekly data for each of the 130 parishes. I will describe the temporal and spatial dynamics of the plague, and discuss our efforts to estimate the transmissibility of the infectious agent. I will also briefly describe other projects in progress inspired by disease-specific mortality records for London over the past 650 years.
It is usually expected that nonrelativistic many-body Schroedinger equations emerge from some QFT models in the limit of infinite masses. For instance, from Yukawa\'s QFT, if the initial state contains 2 fermions, we expect to recover a 2-fermion nonrelativistic Schroedinger equation with 2-body Yukawa potential (in the limit of infinite fermion mass). I will give an easy (but still heuristic) derivation of this, based on the analysis of the corresponding Feynman diagrams and on the behaviour of the complete propagators for large spacetime distances. Then, I may outline another possible derivation based on the Schroedinger picture and dressed particles.
A single classical system is characterized by its manifold of states; and to combine several systems, we take the product of manifolds. A single quantum system is characterized by its Hilbert space of states; and to combine several systems, we take the tensor product of Hilbert spaces. But what if we choose to combine an infinite number of systems? A naive attempt to describe such combinations fails, for there is apparently no natural notion of an infinite product of manifolds; nor of an infinite tensor product of Hilbert spaces. But, at least in the quantum case, the situation is not as hopeless as it might appear. We argue that there does indeed exist a natural mathematical framework for combinations of infinite numbers of quantum systems.
There are two notions that play a central role in the mathematical theory of computation. One is that of a computable problem, i.e., of a problem that can, in principle, be solved by an (idealized) computer. It is known that there exist problems that \'have answers\', but for which those answers are not computable. The other is that of the difficulty of a computation, i.e. of the number of (idealized) steps required actually to carry out that computation. It is known that, given any appropriate \'degree of difficulty\', there exists a problem that, while computable, is at least that difficult. These two notions, while purely mathematical, are designed to reflect, in some broad sense, the physics of the computation process. But there are indications that physics may have something further to say about them. Indeed, it has been suggested that, by using general relativity, some problems that are (mathematically) non-computable may become computable; and that, by using quantum mechanics, some problems that are (mathematically) difficult may become less so. Are there, in principle, any limitations on what physics can do for us in this area?
Coin flipping by telephone (Blum \'81) is one of the most basic cryptographic tasks of two-party secure computation. In a quantum setting, it is possible to realize (weak) coin flipping with information theoretic security. Quantum coin flipping has been a longstanding open problem, and its solution uses an innovative formalism developed by Alexei Kitaev for mapping quantum games into convex optimization problems. The optimizations are carried out over duals to the cone of operator monotone functions, though the mapped problem can also be described in a very simple language that involves moving points in the plane. Time permitting, I will discuss both Kitaev\'s formalism, and the solution that leads to quantum weak coin flipping with arbitrarily small bias.
At a very basic level, physics is about what we can say about propositions like \'A has a value in S\' (or \'A is in S\' for short), where A is some physical quantity like energy, position, momentum etc. of a physical system, and S is some subset of the real line. In classical physics, given a state of the system, every proposition of the form \'A is in S\' is either true or false, and thus classical physics is realist in the sense that there is a \'way things are\'. In contrast to that, quantum theory only delivers a probability of \'A is in S\' being true. The usual instrumentalist interpretation of the formalism leading to these probabilities involves an external observer, measurements etc.In a future theory of quantum gravity/cosmology, we will have to treat the whole universe as a quantum system, which renders instrumentalism meaningless, since there is no external observer. Moreover, space-time presumably does not have a smooth continuum structure at small scales, and possibly physical quantities will take their values in some other mathematical structure than the real numbers, which are the \'mathematical continuum\'. In my talk, I will show how the use of topos theory, which is a branch of category theory, may help to formulate physical theories in a way that (a) is neo-realist in the sense that all propositions \'A is in S\' do have truth values and (b) does not depend fundamentally on the continuum in the form of the real numbers. After introducing topoi and their internal logic, I will identify suitable topoi for classical and quantum physics and show which structures within these topoi are of physical significance. This is still very far from a theory of quantum gravity, but it can already shed some light on ordinary quantum theory, since we avoid the usual instrumentalism. Moreover, the formalism is general enough to allow for major generalisations. I will conclude with some more general remarks on related developments.
Two spinning black holes emit gravitational waves as they orbit, and eventually merge to form a single black hole. How do the properties of the final black hole depend on those of the initial black holes? This is a classic problem in general relativity, with implications for astrophysics, cosmology, and gravitational wave detection. I will describe the rapid numerical and theoretical progress over the past two years, and discuss some open questions and future directions.