Cosmologists at Perimeter Institute seek to help pin down the constituents and history of our universe, and the rules governing its origin and evolution. Many of the most interesting clues about physics beyond the standard model (e.g., dark matter, dark energy, the matter/anti-matter asymmetry, and the spectrum of primordial density perturbations], come from cosmological observations, and cosmological observations are often the best way to test or constrain a proposed modification of the laws of nature, since such observations can probe length scales, time scales, and energy scales that are beyond the reach of terrestrial laboratories.
I will discuss an alternative to inflation based on a Galileon field. The model starts in a (contracting or expanding) quasi Minkowski phase and all the energy of the Universe in generated suddenly in a sort of Genesis associated with a strong violation of the Null Energy Condition. The symmetries of the model force any additional scalar field to acquire a scale invariant spectrum of perturbations.
How can we rule out whole classes of dark energy models? And what quantities, at what redshift, and with what accuracy, should be measured in order to rule out these classes of models? I present answers to these questions by discussing an approach that utilizes the principal component parametrization of dark energy. I show results based on current data, and future forecasted data from SNAP and Planck.
We show that the existence of the bullet cluster, 1E0657-56,
is incompatible with the prediction of the standard Lambda CDM
cosmology. The probability of finding the large infall velocity (3000 km/s)
necessary for explaining the X-ray and weak lensing data of 1E0657-56 is
between 3.3x10^{-11} and 3.6x10^{-9}. The existence of the bullet cluster
poses a serious challenge to LCDM cosmology, unless a lower infall
velocity solution for 1E0657-56 with <1800 km/s is found.
The Atacama Cosmology Telescope (ACT) has recently measured the CMB angular power spectrum from maps with arcminute resolution at 148 GHz. By fitting to a template for the SZ angular power spectrum, we constrain the model's amplitude A_SZ < 1.63 (95% confidence level) and the amplitude of matter perturbations sigma_8 < 0.86 (95% CL). In this talk, we review the fiducial template and present additional templates for the SZ angular power spectrum based on different models for the hot gas in dark matter halos. We also discuss how the TSZ, KSZ, and SZ power spectra scale with sigma_8.
X-ray surveys and deep Chandra observations recently provided ~10% accurate measurements of the total mass in nearly 100 galaxy clusters at z=0-0.9. These data clearly show the effect of Dark Energy on slow-down of the structure growth at z<1. THe combination of the structure growth measurements with other cosmological observations substantially improves the constraints on the Dark Energy equation of state parameter. More advanced applications include constraints on the deviations from General Relativity on 10-100 Mpc scales. Will the situation improve in the future when samples of 10^3-10^5 clusters are available? I will review the current ''bottlenecks'', and discuss possible strategies for using future cluster data for ''precision cosmology''.
I will discuss distinctions between dark energy and modified gravity explanations of cosmic acceleration from the horizon scale to the deeply non-linear regime using the modified action f(R) and braneworld DGP models as worked toy examples.
Observations are opening new windows to test general relativity at cosmological scales. In this talk, I will discuss how gravity determines the expansion and structure formation of the universe, what smoking guns of gravity in the cosmos we are expecting, what difficulties we are facing to perform unambiguous tests of gravity and what are possible ways to overcome these difficulties.
Non-linear structures in the universe leave characteristic imprints in the cosmic microwave background. These include Compton scattering (Sunyaev-Zeldovich effects) and gravitational lensing. The South Pole Telescope now has a catalog of massive galaxy clusters that were discovered this way, along with a measure of the background fluctuations generated by smaller clusters, that can be used to chart the growth of structure in the universe.